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Abstract 
This paper introduces technological diffusion in the neoclassical growth model. A 

log-linearized approximation of the model is solved analytically. Due to the presence of two 
negative eigenvalues, the model’s dynamics are richer than the dynamics of the basic neoclas-
sical growth model. 
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1. Introduction 

    In the theory of economic growth, there exist two main sources of convergence: 
diminishing returns to capital and technological diffusion. Diminishing returns to 
capital apply in neoclassical growth models [see, for example, Barro and 
Sala-i-Martin (1995), chapters 1 and 2]. The present paper combines the neoclassical 
growth framework with the diffusion of technology from the world’s leading country. 
An important observation is that the given framework can be solved analytically in 
its log-linear approximation. As expected, the presence of technological diffusion 
leads to a richer convergence pattern in the neoclassical growth model. 
    The literature on technology diffusion goes back to Nelson and Phelps (1966), 
who develop a simple model in which the speed of technological diffusion depends 
positively on the technological gap between leading and following countries. Using 
the idea of Nelson and Phelps, Findlay (1978a) proposes a formal model in which 
the speed of technological transfer between advanced and backward regions is 
treated. Barro and Sala-i-Martin (1997) provide microeconomic foundations for the 
Nelson and Phelps model. Barro and Sala-i-Martin’s framework exhibits conver-
gence because imitations are assumed to be cheaper than original innovations in 
technologically leading economies. Barro and Sala-i-Martin’s contribution justifies 
the differential equation for technology in the present model. 
    Other studies examining technological diffusion include Baranson (1970), 
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Mansfield (1975), Findlay (1978b), and Wang and Blomström (1992). Baranson 
(1970) discusses the role of international firms in the cross-country technological 
transfer; his study focuses on the transfer logistics and the conflicts of interest in 
licensing versus investment decisions. Mansfield (1975) addresses the importance of 
resource costs in the technological transfer and briefly examines the case of the 
U.S.-U.S.S.R. transfer of technology. In general, the benefits of technological trans-
fer include factor-cost reductions. The costs of transfer involve design and adapta-
tion costs. Findlay (1978b) proposes a simple framework in which the optimal tech-
nological transfer is achieved at a point which maximizes the difference between the 
benefits and the costs. Wang and Blomström (1992) analyze a model of international 
technology transfer via foreign direct investment. In their paper, the technology 
transfer is discussed as an endogenous phenomenon which results from the strategic 
interaction between subsidiaries of multinational corporations and host country 
firms. 
    The present paper introduces technological diffusion in an exogenous growth 
model. Exogenous growth models exhibit a convergence pattern, while the simplest 
endogenous growth model (the AK model) does not exhibit convergence. Therefore, 
the dynamics of an exogenous growth model with technological diffusion are richer 
than the dynamics of the simple endogenous growth model with technological diffu-
sion. Thus we focus on an exogenous rather than endogenous framework. 
    The model’s dynamics involve two negative eigenvalues. Elsewhere [Duczyn-
ski (2002)] I show that an open-economy model with two types of capital and dif-
ferent adjustment costs for investment exhibits a similar pattern. I make the same 
observation in Duczynski (2003), where I study an open-economy model with one 
type of capital, technological diffusion, and adjustment costs. It is plausible that 
these models with two negative eigenvalues provide a better description of reality 
than standard models with one negative eigenvalue. The evolution of capital, output, 
and consumption in the real world may be much more complicated than the pre-
dicted behavior in standard growth models. Of course, a rigorous empirical justifica-
tion of models with two negative eigenvalues is left for future research. 

2. The Model 

    This section considers an extension of the Ramsey-Cass-Koopmans neoclassi-
cal growth model [for the model, see, for example, Barro and Sala-i-Martin (1995), 
chapter 2)]. Let the aggregate production be given by the Cobb-Douglas production 
function 

,)( 1 αα LAKY  (1) 

where Y  is output, K  is capital, A  is a technological parameter, L is labor, and 
α  is the capital share satisfying 10 α . Labor is assumed to grow at a constant 
rate, n. The evolution of the technological parameter is given by 
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where LA is the level of technology in the world’s technological leader, 
1)( LAτAa , and g, λ , and τ are positive parameters. The technological dy-

namics are assumed to be influenced by two sets of forces. The term g in (2) reflects 
domestic forces of technological innovations (e.g., domestic R&D). Similar to the 
standard neoclassical growth model, this term is given exogenously. The term 

AAAτ L )(λ  relates to the diffusion of technology from the leading country. [See 
Nelson and Phelps (1966) for a similar expression. The present term differs from 
Nelson and Phelps in parameter τ  and in abstracting from the role of human capi-
tal in technological diffusion. Nelson and Phelps claim that λ  should depend posi-
tively on human-capital intensity.] Thus, the speed of technological diffusion is 
faster the further the level of technology is below its long-run target, LAτ . The 
speed of technological transfer is proportionate to λ , which is an exogenously 
given parameter. Parameter τ  is assumed to be less than 1, which captures the fact 
that the economy is converging to a lower steady state than the level of the leading 
country. 

There exist two principal reasons why the transfer of technology depends 
positively on the technological gap. First, technologically backward economies have 
a large number of products which can be imitated. Second, a lower quality of exist-
ing products in backward economies leads to a higher potential for technological 
jumps on the quality ladder. The equation of motion for LA  is assumed to take the 
form: 

g
L

L
A
A . (3) 

Thus, for simplicity, the technological change in the leading country is assumed to 
be the same as the long-run technological growth rate of the converging country. 
Assuming different growth rates would probably substantially complicate the analy-
sis. Because of the absence of externalities, the decentralized outcome in the present 
model coincides with the solution to the planner’s problem. The planner’s problem 
is to find 

0
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subject to 

,)( 1 KδCLAKK αα  (4) 

where C  is aggregate consumption,  is the inverse elasticity of intertemporal 
substitution,  is the rate of time preference, and  is the depreciation rate of 
capital. The present-value Hamiltonian for this problem is 
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where μ  is a co-state variable indicating the marginal shadow value of K . The 
first-order conditions are  

,)(1 μeLC tρnθθ  (5) 

.δ)( 11 μALKαμKμ ααH  (6) 

From this it follows that 

.)( 11
nθ

ρδALKα
C
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 (7) 

The transversality condition is 

.0lim Kμ
t

 (8) 

It is useful to rewrite the equations of motion in terms of variables per effective 
worker, )/(~ LAKk , and )/(~ LACc : 
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In a steady state, 1*a , g*x , and 
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where asterisks denote steady-state values. The equations of motion for k~ , c~ , and 
a can be log-linearized around the steady state: 
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where 
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The positive sign of A  follows from the transversality condition. The negative sign 
of B results from (12). The Jacobian matrix has two negative eigenvalues: λ  and 
ω , where 

2
42 ABCAω . (17) 

The positive eigenvalue of the Jacobian matrix is excluded from the analysis to en-
sure the validity of the transversality condition. The negative eigenvalues are analo-
gous to the convergence coefficient in standard growth models. The first negative 
eigenvalue corresponds to the speed of technological diffusion. The second negative 
eigenvalue is identical with the eigenvalue for the basic Ramsey model [see Barro 
and Sala-i-Martin (1995), chapter 2]. Each eigenvalue corresponds to one source of 
convergence. Thus the solution to the log-linearized system takes the form 
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Coefficients ν  are given by initial conditions for k~  and a and by components of 
eigenvectors corresponding to eigenvalues λ  and ω : 
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.0aων  (26) 

The policy function is  
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Thus, consumption per effective worker depends positively on capital per effective 
worker. Output per capita, y , satisfies 

.~αkAy  (28) 

The steady-state output per capita, *y , satisfies 

.~** α
L kτAy  (29) 

The equation of motion for y is  

.)0(ln)ln( ~~* tω
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t
k eναeναayy λ
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The behavior of output (relative to its steady-state level) may be non-monotonic 
over time. This situation applies, for example, if ,.ρ,.δ,. 020050020g  

01.0n,5.0)0(,01.0λ,3.0,2 aαθ  and 2.1~/)0(~ *kk . In this calibra-
tion, .09.0ω  Output decreases initially and increases asymptotically. This is a 
significant difference from the standard Ramsey model, where the behavior of out-
put is monotonic. In the present calibration, the initial fall in output is connected 
with the fact that capital is initially high relative to the initial level of technology. It 
is optimal to dissave (there are low returns on capital), and this effect is strong if the 
capital share is sufficiently low. In this setup, the Ramsey effect of diminishing re-
turns works initially in the opposite direction than the effect of technological diffu-
sion. 

The steady-state growth rate of output per capita is g. If an economy is below 
its steady state, it should grow faster than at the rate of g. The speed of convergence 
for output, β , reflects the tendency of the economy to grow faster the further its per 
capita output is below the steady state. Consequently, the speed of convergence is 
defined by 

.~~lnln * kkαayy
y
yβ λg  (31) 

Thus, 

.
)~~ln(ln

ln
*

~~

kkαa
evαωevαa

β
tω

kω
t

k
λ

λλλ
 (32) 



Petr Duczynski 249 

After substitution for aln and )~/~ln( *kk , we obtain 
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Thus the speed of convergence is a weighted average of ω  and λ . Asymptotically, 
β  tends to the minimum of ω  and λ . The initial value of β  depends on initial 
values of two state variables (capital and technology). The value of β  cannot be 
expressed in terms of only one state variable (such as the output level). 

3. Conclusion 

    The Ramsey growth model is a good approximation of the real world; never-
theless, it describes the economic reality incompletely. It abstracts from technologi-
cal diffusion. Similarly, models with pure technological diffusion cannot completely 
describe reality; among other things, they typically do not consider the convergence 
effect arising from diminishing returns to capital. The present paper combines these 
two important phenomena of the real world. One of the main merits of the paper is 
in showing that the Ramsey model with technological diffusion is tractable. The 
model can be solved analytically in its log-linear approximation, and its dynamics 
are richer than the dynamics of the standard Ramsey model. 
    The model belongs to the class of models with two negative eigenvalues. In 
these models, the speed of convergence is a weighted average of the negative eigen-
values. Systems with two negative eigenvalues appear to be better approximations of 
the real world than systems with one negative eigenvalue. 
    An interesting aspect of the present model is the possibility of non-monotonic 
behavior of output relative its steady-state level if the initial level of capital is high 
and the level of technology is low. This feature constitutes a significant difference 
from the standard Ramsey model. 
    The present model tries to demonstrate that the time evolution of capital, output, 
and consumption in the real world may be a complicated process; more complicated 
than predicted by existing economic models. On the other hand, the time evolution 
of technology is assumed to be very simple—it is exogenously given. At this point, 
the model departs from the economic reality. In the real world, the evolution of 
technology is definitely a complex phenomenon. Endogenizing the evolution of 
technology in the present setup is left for future research. 
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