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Abstract 
Both theoretical and empirical literatures on the stochastic frontier production model 

have been substantially enriched since 1977. However, attempts to derive the distribution of 
the estimated one-sided error term, even under restricted assumptions, have only recently 
been provided. This study attempts to derive the distribution of the estimated one-sided 
inefficiency error and several important statistical properties under fairly general 
assumptions. We also derive the distribution of estimated technical efficiency and provide 
an empirical illustration. 
Key words: stochastic frontier; inefficiency error; estimated technical efficiency; leather 

industry 
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1. Introduction 

The stochastic frontier production function (SFPF) model, a model to measure 
output-oriented technical efficiency (TE) of a firm, independently developed by 
Aigner et al. (1977) and Meeusen and van den Broeck (1977), has been widely used 
in the empirical parametric literature of production economics. The frontier is the 
locus of maximum levels of producible output with the help of the existing 
technology, at all feasible combinations of quantities of inputs. From its very name 
it is evident that the frontier itself is stochastic, in the sense that beside the usual 
one-sided error component introduced to capture the level of possible technical 
inefficiency of the producer, a two-sided stochastic term, introduced to capture the 
possible effects of all the random components beyond the control of the producer, 
can also affect the frontier level of output. Hence, individual production behavior is 
subject to a composite error term. To estimate such a model we, first of all, have to 
assume theoretical distributions for these two components of the composite error. It 
is common practice in the literature to assume that the two-sided random disturbance 
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term is normally distributed white noise, i.e., it has zero mean and constant variance. 
On the other hand, several one-sided distributions have been used in the literature 
for the inefficiency error term (see for instance Coelli et al., 1998, chapters 8 and 9; 
Kumbhakar et al., 2000, chapter 3). It can be noted in this connection that the 
distribution of the estimated inefficiency term may not look like the one which, prior 
to estimation, is assumed. Unfortunately, no serious attempt has been provided to 
look into this issue until recently, when Wang and Schmidt (2009) theoretically 
derived the distribution of the estimated one-sided inefficiency error term, assuming 
it follows a half-normal distribution.  

The objective of this paper is three-fold. First, we attempt to theoretically 
derive (in light of Wang and Schmidt, 2009) the probability density function of the 
estimated inefficiency error term, assuming that it has a general truncated normal 
distribution. We also state its several important statistical properties. Second, we 
derive the theoretical density of the estimated TE of firms. Finally, we plot this 
theoretical density using a real dataset and see whether the distribution of the 
estimated TE of the firms is consistent with this theoretical density. 

The paper unfolds as follows. In Section 2, we derive the theoretical density of 
the estimated inefficiency and its important statistical properties. In this section we 
also derive the probability density of the estimated TE of the firms. In Section 3, we 
describe our empirical model, and Section 4 concludes. 

2. Theoretical Density of the Estimated Technical Efficiency 

Here we show the distribution of the estimated inefficiency error as well as 
estimated TE. We assume that ),(~ 2

uiii zNidu σδμ =+  and ),0(~ 2
vi Niidv σ .1 Let 

the probability density function of any random variable θ  be denoted θf  and the 
joint density function of any two random variables θ  and ϑ  be denoted ϑθ ,f . We 
use two standard results: (a) if )( pmm =  where p  is a random variable and thus m  
is also a random variable, then mpff pm ∂∂=  and (b) if ),( yxqq =  and 

),( yxrr = , then ),(),(,, rqyxff yxrq ∂∂= . The second term of the right-hand-side 
expression in either (a) and (b) is known as the Jacobian of the transformation. 
Observe that the term within “ ” in (a) is a scalar but in (b) is a matrix. Here, 

mp ∂∂  refers to the absolute value of mp ∂∂  and ),(),( rqyx ∂∂  refers to the 
determinant of: 
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Considering the simple transformations uvuzz == ),(11  and ε== ),(22 vuzz  
uv −= , we get 1zu =  and 12 zzv += . Hence, using (b) we get: 
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Hence, )),(,(),( ,, iiiivuiiu uvufuf εεε = . 
In order to simplify expressions we shall use the following notation and 

simplifications. 
(i) For the distribution function of a standard normal variable, ( )Φ ⋅ : 
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Using (i)–(iv), the joint density function of ),( iiu ε  may be rewritten as 
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Therefore, the marginal density of ε  is given by: 
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where ( )φ ⋅  is the probability density function of a standard normal variable, 
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where )()()( 2 ssss λλλ +−=′ . Therefore, 
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Imposing a half-normal restriction ( 0== δμ ii z ) in (ix) we get: 
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Now it is straightforward to see that (x) will coincide with expression (8) of Wang 
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We want to mention here some facts about the inverse Mill’s ratio 
)](1[)()( sss Φ−= φλ  stated above. It is straightforward that as −∞→s , (i) 
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Since ]1)([ˆ *
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which is the distribution assumed for the inefficiency error term iu . 
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Thus it is easy to see that the estimated inefficiency error under the general 
assumptions we have considered has similar statistical properties if one assumes a 
half normal distribution (see Theorem 1 in Wang and Schmidt, 2009). 

We also want to show the probability density function of the estimated level of 
technical efficiency. Using the Jondrow et al. (1982) technique, expression (i), (v) 
and (viii), we get that the estimated TE is: 
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Now, using the result (a) stated above we can write: 
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3. Empirical Model Considered 

We considered the famous translog form of the production function to explain 
the i th firm’s production behavior given three input variables—the value of 
intermediate inputs ( iI ), the amount of labor ( iL ), and the value of fixed capital 
( iFA ). The frontier function has the following form: 



International Journal of Business and Economics 

 

76

,))(ln(ln
))(ln(ln))(ln(ln)(ln

)(ln)(lnlnlnlnln

23

1312
2

33

2
22

2
113210

iiii

iiiii

iiiiii

uvFAL
FAILIFA

LIFALIY

−++
+++

+++++=

β
βββ

ββββββ
 (1) 

where jβ  is the coefficient of the covariate ln jiX , where jiX  is  the amount of the 
j th input ( 1, 2,3j = ) used by the i th firm, 0β  is the constant term, and the other 

coefficients jiβ ’s are taken to be symmetric. The usual two-sided statistical noise iv  
and the one-sided nonnegative inefficiency error iu  are assumed to be distributed 
independently. As in Lundvall and Battese (2000), Bhandari and Maiti (2007), and 
many others, the i th firm’s inefficiency term is taken to depend on firm-specific 
variables like size of the firm (measured by the intermediate inputs used, iI ), its age 
( iAge ), and so on, and their associated parameters (denoted δ ) along with those of 
the SFPF will be estimated through a single-stage maximum likelihood estimation 
(MLE) method (see for details Battese et al., 1988, 1993). This also allows for the 
assumption that the inputs used in the deterministic part of the stochastic frontier, 
X , and the variables used to explain the inefficiency term may overlap. In other 

words, the position of the frontier may depend on things other than inputs while 
some of the inputs themselves may also affect TE (Wang and Schmidt, 2002). In 
addition, we assume that the two-sided random error term is distributed 
independently of the regressors and of the inefficiency-explaining variables. Thus 
the following inefficiency sub-model is added to the SFPF model in (1):  

( ) ( ) ( ){ } ( ){ }2
22

2
11210 lnlnlnln iiiii AgeIAgeI δδδδδμ ++++=  

( ){ } ( ){ } ODSDSDAgeI ii 0320210112      lnln δδδδ ++++ , 
(2) 

where 1SD , 2SD , and OD  are the three different (intercept) dummy variables. The 
first two are used to distinguish firms located in two different groups of Indian states 
while the last one is introduced to form groups of firms belonging to two alternative 
types of organizations. 

To estimate model (1)–(2) we use cross-sectional micro-level data on the 
Indian leather industry collected by the Central Statistical Organization (CSO), 
Government of India through its Annual Survey of Industries (ASI) and made 
available electronically for years 1984–85, 1985–86, 1989–90, 1990–91, 1994–95, 
1999–2000, and 2002–03. Our data cover the entire organized leather sector, i.e., the 
part of the industry for which ASI data are published by CSO on a regular basis. 
Although an overwhelming majority of the production of Indian leather industry 
comes from its un-organized segment,2 it is very difficult to do similar kind of 
analysis for this segment due to non-availability of reliable data. 

Using the software package FRONTIER 4.1 we estimated the model and 
obtained the TE score of each firm for each year. We plotted proportions of firms 
(on the vertical axis) over intervals 0.00–0.05, 0.05–0.10, …, 0.95–1.00 of the 
obtained TE scores to construct histograms for each year to show the frequency 
distribution of the estimated TE scores. Detailed results including these histograms 
are to be published elsewhere (Bhandari and Maiti, forthcoming). However, we 
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reproduce the histograms in the left panel of the Figure 1 here to facilitate 
comparison with the theoretically derived probability density of the estimated TE, 
which is shown in the right panel. The histograms show a very high negatively 
skewed distribution for each year. In other words, an overwhelming majority of the 
firms have a very high level of TE and most of the remaining firms are distributed to 
the left of the mode of the distribution to form a very long negative tail. 

Figure 1: Histograms (Left) Showing Proportions of Firms (Vertical Axis) over 20 Equal-Width 
Intervals of TE Scores (Horizontal Axis) and the Probability Density (Right) of Estimated TE 

(Vertical Axis) against Estimated TE (Horizontal Axis)  
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Figure 1 (Continued) 

 

 

 

 

4. Conclusion 

The stochastic frontier production function model has been widely used since 
its inception in 1977 to estimate technical efficiency of production units. It is also 
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not uncommon in the literature to empirically estimate such technical efficiencies 
using readily available statistical software packages, e.g., LIMDEP, FRONTIER, 
STATA, and to study the distribution of estimated efficiencies. However, no serious 
attempt has been made to find the distribution of the estimated one-sided 
inefficiency error or the estimated efficiency levels. It is to be noted in this context 
that the distribution of the estimated one-sided error may not be identical to the one 
which is theoretically assumed for the population. Only recently Wang and Schmidt 
(2009) theoretically derived the distribution of the estimated one-sided inefficiency 
error term assuming that it is a half normal distribution. This paper attempts to 
generalize the Wang and Schmidt (2009) results by assuming that the inefficiency 
error has a general truncated normal, instead of the restrictive half normal, 
distribution. We also state and prove several important statistical properties. In this 
connection we also derive the theoretical probability density of the estimated TE. 
We also compare the observed distributions of TE with theoretical counterparts. It is 
clear from Figure 1 that these two sets of distributions are at least visually consistent 
with each other. However, alternative goodness-of-fit statistics (Kolmogorov-
Smirnov or Personian 2χ  or both) can be used to test whether the discrepancy 
between these two sets of distributions is statistically significant using methods in 
Wang et al. (2011). 

Notes 

1. Kopp et al. (1990) uses a generalized method of moments estimation procedure when iv  is not 
normal. 

2. For instance, according to the latest data available at the CSO, the share of unregistered 
manufacturing sector of the leather and fur products industry was more than 77% in 2004–05. 
Although this has come down gradually, it was still as much as 64% in 2008–09. 
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