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1. Introduction 

Let }{ tX  and }{ tY  be two single-variable stationary time series. X  is said 
to fail Granger-cause Y  if the following equality of conditional expectations holds 
(Granger, 1969): 

1 1 2 1( | , , , ) ( | )t t t t t tE Y Y X X E Y Y− − − −=K . (1) 

Checking for Granger causality has now become a standard procedure in applied 
time series (Enders, 2010; Greene, 2008; Lutkepohl, 2006). The conventional testing 
procedure formulates the problem in a vector autoregressive (VAR) format that 
summarizes the following system of two regressions: 

tttt XYY 111111 εαγμ +++= −− , (2) 

tttt YXX 211112 εβδμ +++= −− . (3) 

The conventional procedure for testing the hypothesis that X  fails to Granger 
cause Y  tests the null hypothesis: 

0: 10 =αH  (4) 

on the system in (2)-(3). The test is the usual 2χ  or F -test (in the multivariable 
case) or the z -test or t -test (in the single variable case). The disturbances 1ε  and 

2ε  are assumed to have the classical structure, e.g., each satisfies the assumptions 
of homoscedasticity and no-autocorrelation, but there is cross-equation correlation 
so that the covariance matrix for the system is defined by: 
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where, for a sample of size T , I  is the )( TT ×  identity matrix. A feature of the 
system in (2)-(3) is that the regressors in the two equations are identical and, hence, 
ordinary least squares (OLS) and generalized least squares (GLS) generate the same 
parameter estimates. However, the efficiency of the estimated variances for the 
parameters requires a consistent estimate of ][ ijσ=Σ . Since the single-equation 
OLS estimates are consistent, the corresponding residuals for the two equations are 
then used to produce consistent estimates for ijσ . The procedure generates a 
consistent estimate Ω̂  of Ω , which is utilized in the stated test procedure. 

A shortcoming of the conventional Granger causality test as summarized above 
is that it actually tests the following limited version of the non-causality statement in 
(1): 

)|(),|( 111 −−− = ttttt YYEXYYE , (6) 

which is the Granger causality of order one. As noted above, a number of theoretical 
and computational simplifications emerge as a consequence of the stated limitation 
to one lag of X . A more general version of the non-causality statement is defined 
for a positive integer p  as: 

1 1 2 1( | , , , , ) ( | )t t t t t p t tE Y Y X X X E Y Y− − − − −=K , (7) 

This is the order- p  statement of the causality and can be tested by extending the 
system in (2)-(3) to: 

tptpttt XXYY 111111 εααγμ +++++= −−− L , (8) 

tptpttt YYXX 211112 εββδμ +++++= −−− L . (9) 

The non-causality test is then a test of the joint hypothesis: 

0: 210 ====′ pH ααα L  (10) 

on model (8)-(9), which is again a conventional 2χ -test (for large T ) or F -test 
(for moderate T ) on model (8)-(9). The computational simplification in model 
(2)-(3) reflected by having the same regressors in the two equations has now 
disappeared in model (8)-(9) for 2≥p . Hence, for 2≥p , the single-equation OLS, 
although still consistent, is inefficient for estimation of the system in (8)-(9) and a 
more general version of the seemingly unrelated regressions method is used for 
estimation of the parameters and the system covariance matrix. Also, for 2≥p , a 
loss in degree of freedom by )1( −p  emerges as one switches from the order one 
system in (2)-(3) to the larger p -order system in (8)-(9). For the stated finite-order 
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cases, this relative loss of 1p −  in degrees of freedom is clearly an increasing 
function of the lag order, p . 

The main challenge in the stated finite-order cases is the determination of the 
lag order, p . It is well known that the appropriate refinement for determining the 
lag order is from general to specific, that is, start with the largest lag order and then 
test the restrictions that generate smaller orders. This is mainly because of the 
omitted variable bias that is associated with the reverse refining from a smaller lag 
order to a larger lag order. This refinement principle provides one compelling reason 
to start from infinite lags. There are two other fundamental reasons for working with 
causality of infinite order. First, the Granger causality in its most general form 
contains infinite lags as reflected in (1) above. Second, as will be shown, the use of 
infinite lags under a rational structure allows reducing the relative loss of degrees of 
freedom associated with the number of lags from 1p −  for the order- p  system in 
(8)-(9) to only one for the infinite-order case. 

2. Testing Causality of Infinite Order 

The last section summarized the foundations of the existing finite-order 
Granger causality tests and pointed out three of the theoretical and applied reasons 
for using a test of infinite-order causality in conjunction with the conventional tests 
of finite-order causality. The stated three reasons are associated with the well known 
refinement principle for determining the lag order, the general statement of Granger 
causality, and the loss of degrees of freedom in the finite-order cases. In this section 
we propose a simple procedure for testing infinite-order Granger causality. The 
literature has shown various complications that arise in contexts that incorporate 
infinite lags. For instance, the core studies of Saikkonen and Lutkepohl (1996) and 
Lutkepohl and Saikkonen (1997) rigorously highlighted some of the complications 
and the needed finite-order approximations in the general area of VAR analysis with 
infinite lags. Our focus here is on testing infinite-order causality in a simple 
construction that is free of any finite-order approximation and relies only on a 
mainstream assumption. 

The second equation in both of the finite-order systems in (2)-(3) and (8)-(9) 
are mirror images of the first equation in the sense that the second equation involves 
only switching of the two variables and introduction of new parameters. 
Accordingly, we present construction of the first equation for the case of infinite 
lags and then generate the second equation of its system. The generalization of (8) to 
infinite lags is: 

tjtj
j

tt XYY 1
1

111 εαγμ +++= −

∞

=
− ∑ . (11) 

In a study with an objective similar to the one in the present study, Lutkepohl 
and Poskitt (1996) considered a multivariate version of (11) and assumed a 
finite-order lag ( h ) for variable X , instead of infinite order in our study here. The 
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infinite-order feature of Lutkepohl and Poskitt (1996) emerges from a central 
assumption (Assumption 1, p. 66) that defines the lag order h  as a specific 
function of the sample size (T ) so that h  converges to infinity as T  converges to 
infinity with a specific finite sum property. Lutkepohl and Poskitt (1996) then 
present an asymptotic Wald ( 2χ -squared) test of Granger causality and then appeal 
to the stated assumption to argue that the test is asymptotically valid in the 
infinite-order case. The approach in our study here is fundamentally different. We 
employ the geometric structure for the infinite lag as an alternative approach and 
present a test that has well known properties. 

We now adopt a popular structure for the lag effect, namely, the geometric 
structure. The structure states that the effect of the lag sequence decreases over time 
and this decrease has a geometric pattern. Specifically, we assume 

j
j πλα = , for some π  and λ  with 1<λ . (12) 

Therefore, with a use of this assumption, the lag operator ( L ), and the geometric 
series, (11) reduces to: 
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Multiplying both sides by )1( Lλ−  reduces (13) to: 

tttt LLXYLYL 1111 )1()1()1()1( ελπλλγμλλ −++−+−=− − , (14) 

which after rearrangements reduces to: 

ttttt XYYY 1121111 )()1( ηπλλγγλμλ ++−++−= −−− , (15) 

where tt L 11 )1( ελη −= . Equation (15) is an infinite-order analog of the first equation 
in system (8)-(9). Also, it follows from the assumption in (12) that the infinite-order 
analog of the finite-order non-causality hypothesis 0H ′  in (10) above is now: 

0:0 =′′ πλH . (16) 

The infinite-order causality test is equivalent to testing 0H ′′  on a two-equation 
system that consists of (15) and its counterpart for tX . However, there are some 
complications that need to be addressed. As shown by (15), the two regressions in 
the corresponding system do not have identical regressors. Further, the parametric 
restriction in (16), the regression in (15), and its counterpart regression for tX  are 
all nonlinear. Hence, it appears that one needs a nonlinear system method for 
estimation of the system and a covariance approximation to test the nonlinear 
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restriction in (16). But, for the purpose of causality testing, the relevant structure of 
the problem turns out to be completely linear. To show this, define: 

10 )1( μλϕ −= , (17) 
)( 11 γλϕ += , (18) 

λγϕ 12 −= , (19) 
 3 πλϕ = . (20) 

Then the regression in (15) is written equivalently as 

ttttt XYYY 11322110 ηϕϕϕϕ ++++= −−− . (21) 

It is also clear from the definitions in (17)-(20) that the nonlinear restriction 
0=πλ  in (16) on the nonlinear model in (15) is equivalent to the linear restriction 
03 =ϕ  on the linear model in (21). Thus we have the following result. 

Theorem 1. Testing the infinite-order Granger non-causality statement in (1) under 
the geometric lag structure is equivalent to testing the simple linear hypothesis: 

0: 30 =′′′ ϕH  (22) 

on the linear system 

ttttt XYYY 11322110 ηϕϕϕϕ ++++= −−− , (23) 
 21322110 ttttt YXXX ηφφφφ ++++= −−− . (24) 

The system in (23)-(24) is estimated by the methods discussed in Greene (2008, 
pp. 651-652) and Hatanaka (1974, 1976), and then the standard 2χ -test 
(multivariable, large T ), F -test (multivariable, moderate T ), t -test (single 
variable, moderate T ), or z -test (single variable, large T ) is used to test the 
hypothesis in (22) on this system. It is clear that the loss of degrees of freedom in 
terms of lags in the infinite-order model of (23)-(24) is only one relative to the order 
one model in (2)-(3), which is a smaller loss than the relative loss of 1p −  
associated with the order p  model in (8)-(9) when 3≥p . 

Some of the distinguishing features of the approach here can now be 
highlighted. The ARMA ( , )p q  model uses the finite-order assumption to 
approximate the infinite order. Some of the shortcomings of the finite-order 
assumption were highlighted in Section 1. Alternatively, (12) allows maintaining the 
infinite order but imposes the geometric structure. A similar approach is adopted in 
Engle (1982) where linear decreasing weights analogous to the geometric lag 
structure are imposed on the past innovations to describe the time-varying 
conditional variance. Note that a reduced form of (12) constitutes a special case of 
ARMA ( , )p q  with parameter restrictions. 

Infinite-order lag models in macroeconomics time series also arise as a 
consequence of applying a popular mechanism of expectation formation to a series. 
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A typical case is presented in Greene (2008, pp. 678-680) in which an application of 
the mechanism to inflation rate leads to an infinite-order distributed lag model where 
the coefficients satisfy the geometric structure. While theoretically well grounded, 
the geometric structure may be a misspecification. Aaker et al. (1982) provide an 
empirical example. They suggest use of cross-correlation and residual 
autocorrelation to detect possible misspecification. 

Adding more lagged orders on Y  into the information set in (6) and (7) does 
not affect the analysis here since the test focus is on the coefficients of X . 
Specifically, it will lead to higher-order lagged terms for Y  in (15). The 
non-causality test procedure remains the same. However, empirically, more lagged 
Y  terms introduce more nuisance parameters and reduce the estimation precision, 
thus the test results become less conclusive. An initial lag order selection for the 
response variable Y  may be applied using some of the available criteria in the 
literature (Lutkepohl and Poskitt, 1996, p. 82; Lutkepohl, 2006, chapter 4; Enders, 
2010, p. 70). 
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