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In this note we derive necessary and sufficient condition for equivalence of 

input oriented and output oriented scale elasticity measures for multi-output, multi-

input technologies and provide a Lagrange multiplier (or shadow price) 

interpretation of these scale elasticity measures. 

Following Färe et al. (1986), recall that one can measure local returns to scale 

via the output oriented measure of scale elasticity, defined as: 

1, 1

ln
( , )

ln
oe x y

 



  





, such that ( , ) 1oD x y   .  (1) 

or, alternatively, via the input oriented measure of scale elasticity, defined as: 
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where x  and y  are vectors of inputs and outputs, respectively, while ( , )iD y x  and 

( , )oD x y  are Shephard’s (1957, 1970) input and output distance functions, 

respectively. To save space here, we refer to Färe and Primont (1995) for the 

notation, definitions and properties of the functions involved.
1, 2 

Meanwhile, note that both formulas are trying to measure scale elasticity by 

looking at the relationship between equi-proportional changes in all inputs with 

equi-proportional changes in all outputs, but they do it by using different 

characterizations of technology. Thus, several natural questions arise: “What is a 

relationship between these two alternative measures of scale elasticity?” Are (1) and 

(2) equivalent? Always? Under what conditions? Färe et al. (1986) were the first to 

provide a version of this result with a proof. In the theorem below, we revisit this 

result and provide a Lagrange multiplier interpretation of it.  
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Theorem. Given definitions above, standard regularity conditions of production 

theory and assuming that, in a neighborhood of a point of interest, the distance 

functions ( , )iD y x , ( , )iD y x , and ( , )oD x y , ( , )oD x y  are continuously 

differentiable with respect to each element of ( , )x y , we have: 

( , ) 1/ ( , )o ie x y e y x , (3) 

if and only if 

' ( , ) 0y iD y x y  and ' ( , ) 0x oD x y x  . (4) 

Proof. Due to the implicit function theorem, we can rewrite (1) and (2) in a more 

compact form: 

'( , ) ( , )o x oe x y D x y x   and '( , ) ( , )i y ie y x D y x y  . (5) 

To prove necessity, assume that ( , ) 1/ ( , )o ie x y e y x , then (5) implies that: 

' ( , )x oD x y x = '1/ ( , )y iD y x y ,  

which can hold only if (4) is true. To prove sufficiency, assume (4) is true. Further, 

note that given standard regularity conditions, we can rewrite the output distance 

function as follows: 

( , ) inf{ 0 : ( / , ) 1}o iD x y D y x    . (6) 

The resulting Lagrangian function for this optimization problem can be written as: 

( , | , ) ( ( / , ) 1)iL x y D y x       , (7) 

and so the system of equations defined by the first order condition for (7) is given by: 
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where * *( , ), ( , )x y x y      are the optimal solutions to (7). Thus, from (8), we 

have: 
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/1/ [ ( / , ) / ( ) ]y iD y x y     . (10) 

And, since *  is a solution to optimization problem (7), its value must be equal to 

unity, and so: 

* '1/ ( , )y iD y x y    . (11) 

The right-hand side in (11) is non-zero due to (4), so * 0  , i.e., the constraint in (6) 

is binding at the optimal values, i.e., ( , ) 1iD y x  . Thus, due to (5), equation (11) 

reduces to: 

*  1/ ( , )ie y x . (12) 

On the other hand, note that the envelope theorem applied to (7) tells us that: 

' ' * * * ' *( , ) ( , | , ) ( / , )x o x x iD x y L x y D y x        . (13) 

Post-multiplying both sides of (13) by x  and using again that 
* 1  , we get: 

' * '( , ) ( , )x o x iD x y x D y x x   . (14) 

The left-hand side in (14) is assumed to be non-zero according to (4) and equals 

( , )oe x y  according to (5) since ( , ) 1oD x y   at the optimum. Because ( , )iD y x  is 

homogeneous of degree one in x , Euler’s rule tells us that ' ( , )x iD y x x ( , )iD y x , 

which is equal to unity at the optimum. Thus, (14) becomes: 

( , )oe x y * . (15) 

Combining this last result in (14) with (12), we get the desired expression:
 3

 

( , ) 1/ ( , )o ie x y e y x .  

Intuitively, the theorem above tells us that the two scale elasticity formulas 

measure the same property of technology equivalently and we can get one from the 

other by just taking the reciprocal, provided that certain condition is satisfied. 

Importantly, this condition is the necessary and sufficient condition for this 

equivalence result to hold and it states that, at the points where elasticity is measured, 

the gradients of the input and output distance functions shall not be orthogonal to the 

output and input vectors, respectively. In turn, this technical requirement ensures not 

running into a situation of division by zero (as can be seen among the steps in the 

proof of the theorem). By this condition, we ensure that at a given point of 

measurement, neither measure of scale elasticity explodes or degenerates to zero, 

and then (and only then) they give equivalent information about the scale of 

technology at that point. On the other hand, the necessary and sufficient condition (4) 

also has economic meaning: it requires that an increase in all inputs by the same 
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proportion shall cause some proportional non-zero change in all outputs, and, 

naturally, it should not be an infinite increase. In turn, this condition also implies 

that, for the equivalence of the two measures, the technology must be so that 

( , ) 1 ( , ) 1o iD x y D y x    at a point where the elasticity is measured, as is also 

seen from the steps of the proof of the theorem. 

It is also worth noting that a side fruit of the proof of the theorem above is an 

interesting economic intuition of the scale elasticity measures. Specifically, (15) tells 

us that the output oriented scale elasticity has Lagrange multiplier meaning—it is the 

shadow price of relaxing the constraint, in the optimization problem (6). A similar 

argument can be made about the input oriented scale elasticity measure being the 

Lagrange multiplier or the shadow price of relaxing the constraint in optimization of 

the input distance function defined in terms of the constraint on the output distance 

function, formulated analogous to (6). Such Lagrange multiplier interpretations of 

scale elasticity measures also give a simple way of obtaining and analyzing a 

measure of scale elasticity, without taking derivatives as in (1), (2), and (5). 

Notes 

1. See also Hanoch (1975), Panzar and Willig (1977), Banker (1984), Banker et al. (1984), Färe et al. 

(1986), Banker and Thrall (1992), Førsund (1996), Golany and Yu (1997), Fukuyama (2000, 2003), 

Førsund and Hjalmarsson (2004), Krivonozhko et al. (2004), Hadjicostas and Soteriou (2006, 2010), 

and Podinovski et al. (2009), to mention just a few. 

2. It is worth noting that definitions in (1) and (2) relate the vector of inputs to the vector of outputs 

implicitly, and so we rely on the implicit function theorem and assumptions required by it. 

3. Note that a similar proof can be established by starting from the definition of ( , )iD y x in (6). 
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