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1. Introduction 

Historical stock market returns and risk can be quite different from historical 

stock investors’ returns and risk because of different timing and magnitude of 

investment flows. As Dichev (2007) points out, investors’ returns equal stock market 

returns only if the investors choose a buy-and-hold (BH) strategy; other strategies 

involve different timing and magnitude of investment flows, which create differences. 

With BH, investors do nothing no matter how stock prices change during the period 

of investment. With a contrarian or concave strategy, they buy more as prices fall and 

sell as they rise, whereas with a momentum or convex strategy, they sell as prices fall 

and buy as they rise. Contrarian and momentum strategies both make adjustments 

depending on price changes; therefore, both often make investment returns and risk 

unequal to the BH strategy. 
How, specifically, are the returns and risk different? As Perold and Sharpe (1988) 

demonstrate, while BH gives straight-line payoff diagrams, momentum and 

contrarian strategies create convex and concave payoff curves, respectively. These 

two strategies generally yield very different return distributions. Momentum and 

contrarian strategies can be seen as mirror images of one another on either side of the 

BH strategy. Therefore, it is interesting to know how these two dynamic strategies 

change returns and risk. 

Through Monte Carlo simulations, this paper compares the investment returns 

and risk of three strategies: (1) BH, (2) a contrarian strategy, constant-mix (CM), and 

(3) a momentum strategy, constant-proportion portfolio insurance (CPPI). The 

simulated results show that CM has the highest median returns followed by BH and 

then CPPI. In terms of value-at-risk, CPPI has the lowest risk, while CM has the 
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highest. Therefore, there exists a risk-return tradeoff across the strategies, in terms of 

the median return and the value-at-risk, but not in terms of mean return and standard 

deviation. Because the return distributions generated are not all symmetric and 

normally distributed, the mean return is not the most likely return and the standard 

deviation is not an appropriate risk measure. As the risk measure focusing on 

downside risk measurement, here value-at-risk is more appropriate than the standard 

deviation. For the three strategies, the momentum strategy gives the most downside 

protection, while the contrarian strategy has the least downside protection. 

The remainder of the note is organized as follows. Section 2 presents the stock 

price model, the investment strategies, and how the investment simulation is set up. 

In Section 3, the simulated results and discussions are given. 

2. The Investment-Simulation Design 

To generate the return distributions of the three strategies for further analysis, 

Monte Carlo simulation is set up following the framework of Cesari and Cremonini 

(2003). The three key elements are an initial portfolio, a stock-price and interest-rate 

model, and the rebalancing mechanisms for CM and CPPI. 

All strategies have the same initial 50-50 stock-cash portfolio. The cash in the 

portfolios for the CM and CPPI strategies is used as a reserve for investment inflows 

and outflows during investment periods. No additional cash input or any withdrawal 

is allowed after the initial portfolio is set up. Thus, all strategies are self-financing. In 

this way, the three strategies are compared with the same investment scale of over a 

five-year period.  

The stock price is assumed to follow geometric Brownian motion. The stock 

price model can be written as: 

t t t t
dS S dt S dw   , (1) 

where 
t

S  is the stock price at time t , 
t

w  is a Wiener process, and   and   
are the drift and volatility parameters. Based on this equation and given the values of 

the initial stock price and the parameters, stock market scenarios can be generated by 

Monte Carlo simulations. Here,   and   are set to be 10% and 20% respectively. 

These numbers are close to the long-term average index return and the return 

volatility of the S&P 500. In addition, a lower average with 5%   and a higher 

volatility with 30%   are considered. In total, there are four market situations: 

normal-return-normal-volatility ( 10%   and 20%  ), low-return-normal-volatility 

( 5%   and 20%  ), normal-return-high-volatility ( 10%   and 30%  ), 

and low-return-high-volatility ( 5%   and 30%  ). For each situation, 10,000 

scenarios are created. The cash is assumed to earn a fixed continuous compounding 

interest rate. Under this setup, the source of risk comes from the stock-market risk 

only. The interest rate is set to 3%, which is close to the long-term average return of 

US treasury bills. 

For the two dynamic strategies, CM and CPPI, the rebalancing mechanisms, 
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which determine the timings of capital inflows and outflows, are set up based on the 

price principle, with rebalancing only when the new simulated price has increased or 

decreased no less than 2.5% percent since the last rebalancing. The stock prices are 

simulated weekly (i.e., 1/ 52  ). The transaction costs of the stock are 0.3% of the 

value traded. When rebalancing, the portfolio will be back to the initial 50-50 

stock-cash mix for CM. For CPPI, when rebalancing, the stock and cash positions are 

reset according to the following formulas: 

( )SP m V f  (2) 
CP V SP , (3) 

where SP  and CP  are stock and cash positions respectively, V  is the value of 

the portfolio at the time of rebalancing, f  is the floor, and m  is the multiplier. 

However, when V  is less than f , the portfolio will be held in cash only; when 

 m V f  is larger than V , to avoid the possibility of leverage, the new stock 

position will be set to V . To implement simulations, f  is set to 75% of the 

portfolio value, and m  is set to 2. Under this setup, the initial portfolio mix is the 

same for all strategies. 

3. Simulated Results and Discussion 

After Monte Carlo simulations, the return distributions under the three strategies 

are generated, and then statistics are presented for return and risk analysis. 

Corresponding to the four market situations, the statistics are tabulated in Tables 1–4, 

with the first four central moments of the simulated return distributions (mean, 

standard deviation, skewness, and excess kurtosis) being given. Also, the Jarque-Bera 

statistics, which are used to test the normality of a distribution, are calculated and 

listed in the tables. Finally, the fifth percentile, which is also the value-at-risk, is 

included. 

The return analysis is done by comparing the mean returns and median returns 

across the three strategies. Overall, based on the mean returns, there is no best choice 

of the three for all market situations. However, by looking at the median returns for 

all cases, with or without the transaction costs, CM does best, followed by BH, and 

then CPPI. Though the median return is seldom used in the financial literature, it 

gives consistent ranking across the cases here. 

In analyzing risk, it is important to check the distributions’ normality because 

skewness and excess kurtosis can make the standard deviation inappropriate for 

measuring risk. By using the Jarque-Bera test for normality in the four cases, the 

normality hypothesis is only accepted for CM (with transaction costs or not), but 

rejected for BH and CPPI at the 5% significant level (the critical value is 5.99). In 

fact, the standard deviation of CPPI returns is the largest among the three strategies. 

If we use standard deviation as a risk measure, CPPI will be the riskiest strategy. This 

is not consistent with the downside protection just mentioned above. The large 

standard deviation of CPPI is simply due to the great upside potential; the standard 
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deviation penalizes this potential because it deviates a lot from the average. By using 

an appropriate risk indicator, such as the value-at-risk, we can clarify the riskiness of 

the three strategies. In terms of this indicator, CPPI has the lowest risk and CM has 

the highest risk. 

Last but not the least is the issue of risk-return tradeoff for the three strategies. 

The results show that, while the mean return and the standard deviation do not 

indicate a risk-return tradeoff, the median return and the value-at-risk do. CM, which 

bears the highest risk in terms of the value-at-risk, has the highest median return; 

CPPI, which bears the lowest risk, has the lowest median return. However, by looking 

at the mean returns and standard deviations, there is no regularity in the risk-return 

tradeoff. 

Table 1. Statistics of Simulated Return Distributions under Normal-Return-Normal-Volatility 

 BH CM CPPI 

Mean 6.18% 6.04% (5.98%) 6.74% (6.40%) 

Median 5.68% 6.01% (5.95%) 5.24% (4.88%) 

Standard Deviation 5.06% 4.47% (4.47%) 6.77% (6.70%) 

Skewness 0.5691 0.0288 (0.0285) 0.8798 (0.9183) 

Excess Kurtosis 0.3475 −0.0151 (−0.0151) 0.4170 (0.5006) 

Jarque-Bera statistic 590.02 1.47 (1.44) 1362.52 (1509.85) 

VaR 3.35% 4.32% (4.40%) 3.11% (3.20%) 

Notes: The numbers in parentheses are calculated assuming 0.3% transaction costs. 

Table 2. Statistics of Simulated Return Distributions under Low-Return-Normal-Volatility 

 BH CM CPPI 

Mean 3.53% 3.54% (3.48%) 3.45% (3.17%) 

Median 3.02% 3.52% (3.45%) 1.99% (1.72%) 

Standard Deviation 4.54% 4.47% (4.47%) 5.55% (5.47%) 

Skewness 0.6448 0.0287 (0.0284) 1.2494 (1.2956) 

Excess Kurtosis 0.4942 −0.0148 (−0.0149) 1.5682 (1.7376) 

Jarque-Bera statistic 794.80 1.46 (1.43) 3626.47 (4055.42) 

VaR 4.79% 6.82% (6.90%) 3.79% (3.86%) 

Notes: The numbers in parentheses are calculated assuming 0.3% transaction costs. 
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Table 3. Statistics of Simulated Return Distributions under Normal-Return-High-Volatility 

 BH CM CPPI 

Mean 5.42% 5.44% (5.33%) 5.35% (4.87%) 

Median 4.32% 5.41% (5.30%) 2.29% (1.81%) 

Standard Deviation 7.27% 6.70% (6.70%) 8.96% (8.78%) 

Skewness 0.8363 0.0298 (0.0295) 1.3044 (1.3693) 

Excess Kurtosis 0.7855 −0.0147 (−0.0147) 1.4007 (1.6138) 

Jarque-Bera statistic 1422.57 1.57 (1.54) 3653.21 (4210.36) 

VaR 6.57% 10.12% (10.24%) 4.61% (4.66%) 

Notes: The numbers in parentheses are calculated assuming 0.3% transaction costs. 

Table 4. Statistics of Simulated Return Distributions under Low-Return-High-Volatility 

 BH CM CPPI 

Mean 2.91% 2.94% (2.83%) 2.58% (2.19%) 

Median 1.81% 2.91% (2.80%) −0.10% (−0.44%) 

Standard Deviation 6.53% 6.70% (6.70%) 7.44% (7.24%) 

Skewness 0.9416 0.0298 (0.0295) 1.6990 (1.7784) 

Excess Kurtosis 1.0785 −0.0144 (−0.0145) 3.0059 (3.3733) 

Jarque-Bera statistic 1962.34 1.57 (1.54) 8573.15 (10012.85) 

VaR 7.44% 12.60% (12.73%) 4.85% (4.88%) 

Notes: The numbers in parentheses are calculated assuming 0.3% transaction costs. 
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