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1. Introduction 

One of the market mechanisms, which is frequently used for the trade of a large 

basket of stocks in a short period of time, is called program trading. In a complicated 

financial world, there is a plethora of reasons why investors need to transact 

immediately a large basket of stocks in the market. Thus, it is not surprising that 

program trading constitutes a significant percentage of the trading volume in major 

stock exchanges. A program trade takes two basic forms. In the first form, which is 
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Abstract  
This paper focuses on the mechanism of blind principal bid (BPB) which is the result of 

an auction. An agent auctions a large basket of transactions in several stocks to brokers who   
do not know the individual stock names, but only some generic characteristics of the basket.  
The client delivers this large amount of sales and purchases to the winning broker who has to 
simultaneously trade the basket for a fixed commission fee. The commission is paid on the 
basis of the winning bid at the auction, usually submitted as cents per share. This study 
provides a new model, based on large deviations (LD) approximation results, that may 
facilitate brokers to formulate their bids. A numerical example is used to illustrate the 
methodology and the model is being compared with a Monte Carlo approximation. 
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known as agency trade, a broker places trades on behalf of the client for a fixed 

commission. The client's large amount of sales and purchases generates a risk that is 

held always exclusively by the client and depends on the actual transaction price. The 

second form, known as principal bid (or principal trade), is a trade which is the result 

of blind auctions. In this case, the client transfers the ownership of a portfolio to the 

broker at the current market value for a fixed commission. The total fixed commission 

for the basket is paid on the basis of the submitted bid, usually expressed as cents per 

share. In a blind principal bid (BPB) auction, the client will provide the brokers with 

only specific characteristics of the portfolio. The individual names of the stocks are 

unknown to the participating brokers before the auction. If a bid is accepted, the client 

pays the net proceeds (purchases minus sales) based on the current market values of 

the assets plus the commission to the winning bidder who has a short period of time, 

usually three days, to transact all the sales and purchases ordered by the client. It is 

obvious that all the execution risk is held now by the broker. However, from the 

broker's point of view, the success of the BPB depends heavily on what happens after 

the auction. The broker's optimization problem involves the choice of the bid. The 

submitted bid should be low enough to win the auction, but high enough to generate 

profits from the subsequent trades. In this paper, we particularly concentrate on BPBs. 

The special features of principal bid's process, such as the uncertainty of the broker 

about the individual stock names and the transfer of all the execution risk from the 

client to the broker, make it attractive as a trade option. The blind procedure of the 

auction protects the client from the exposure to additional risks. Brokers who know 

the individual stock names of the basket could front-run the ordered trades. 

Consequently, the market impact of the front-run transactions could affect the 

transaction price of the assets and therefore the net proceeds paid by the client. 

One of the first papers regarding principal trades is written by Almgren and 

Chriss (2003). This paper defines an optimal trajectory for the trading of one stock 

portfolio based on a simple market impact model. An efficient frontier and 

information ratio are introduced by means of the expected profit and variance of the 

portfolio's transaction, as functions of the execution time. The information ratio, 
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analogous to Sharpe ratio, could be used as a pricing tool for program trades. Since 

the authors focus on establishing the information ratio, the important pieces of 

information for the participating broker are the expected profit and its variance. Hence, 

the blind procedure of the auction, which is a special feature of the principal trade, is 

not included in this analysis. The first empirical paper on this topic of BPB was written 

by Kavajecz and Keim (2005). The authors introduce an empirical regression which 

models the trading cost of BPB as a function of the basic characteristics of the basket 

communicated to the brokers. In another empirical study, Giannikos et al. (2012) try 

to better formulate the broker's bids. While Kavajecz and Keim (2005) use as 

independent variables only characteristics of the basket, Giannikos et al. (2012) enrich 

their model with variables related to broker's execution risk. An interesting part of this 

paper is the way in which the authors use the structural models developed by Stoll 

(1978a, b) and Bollen et al. (2004). These structural models were initially developed 

to explain the market maker's spread. By making the analogy of a market maker and 

a bidding broker, the authors apply a modified version of Stoll's original model of one 

stock to a basket consisting of several positions. In the last paper on this topic, Padilla 

and Van Roy (2012) observe that the blind process of the auction increases the cost 

of principal trade for the clients and the goal of their study is to improve the 

mechanism of the principal trade in order to lower the cost of the client and the 

uncertainty of the broker. The authors suggest the incorporation of a trusted 

intermediary between the client and the brokers at the auction process. The potential 

benefits are well demonstrated by the comparison of the Bayesian-Nash equilibrium 

for a standard and an intermediated principal bid auction. Their strong theoretical 

results were additionally supported by Monte Carlo simulations. 

Continuing the line of the study of Giannikos et al. (2012) for the modeling of 

the bids in a blind principal auction, we show how a broker's bid could be formed on 

the basis of important characteristics of the basket such as the value and the volatility 

of the basket, the number of names and the weights in the basket. Large Deviations 

(LD) techniques are used in order to find the optimal bid level that should be submitted. 

In a principal trade, the lack of information about the individual stock names increases 
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the uncertainty of the participating brokers. The brokers try to protect themselves from 

harmful rare events and as a result the level of the submitted bids is really high. 

Kavajecz and Keim (2005) report that 35 out of the 83 lowest bids in their study were 

ultimately rejected. This means that the cost of the principal bid trade for these cases 

was considered severely high by the clients. LD techniques have a natural application 

to the broker's problem as they provide information on probabilities of rare events and 

on the estimation of large losses. 

LD theory is a very active area in applied probability, and its applications have 

been used in many papers in finance, risk management, insurance [see for instance 

Stutzer (2003) and Glasserman (2005)]. One of the papers that have concentrated on 

LD approaches in risk management is Dembo et al. (2004). The main goal of that 

paper is to calculate the total loss of a portfolio with a significant large number of 

positions. The authors examine a double-stochastic model of default timing. They 

introduce a common systematic risk factor as a single random variable. The defaults 

of different firms are considered as independent variables conditional on the value of 

the risk factor. Also, the amounts that will be lost in different default events are 

considered as independent. Our study is moving in the same direction as Dembo et al. 

(2004), in which a LD result regarding independent, identically distributed (i.i.d.) 

random variables is used to approximate a large portfolio loss. This LD argument 

involves ordinary sums of i.i.d. random variables. Dembo et al. (2004) do not 

concentrate on the establishment of an exponential rate of decay but on a precise 

closed form approximation solution for the probability of an event. For this paper, we 

apply a generalization of the above LD argument for weighted sums of i.i.d. random 

variables [see Book (1972)]. 

The paper is organized as follows. The general assumptions of our framework 

are given in section 2, where we also define the problem of the participating broker 

for the optimal bid. In section 3, we develop a LD argument and provide a closed form 

solution for the optimal bid. In section 4, a numerical example is used based on the 

summary statistics of the baskets published by Giannikos et al. (2012) and Kavajecz 

and Keim (2005) that forms an important basis for the comparison of the LD result 
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with an approximation by Monte Carlo simulation. Section 5 provides concluding 

remarks. 

2. Broker's Optimization Problem 

Our analysis is developed from the perspective of the participating broker. For 

the broker's optimization problem, the optimal bid should be low enough to win the 

auction, but high enough to ensure positive profits following the execution of all the 

subsequent obligatory trades. We assume that the portfolio of an asset manager 

includes v stocks. The asset manager needs to sell this portfolio and buy a new one in 

a short period of time which includes u stocks. Thus, his order includes n transactions 

(𝑛 ൌ 𝑣  𝑢). Therefore, there are n stocks total to be transacted and for each stock 

𝑖, 𝑖 ൌ 1, … 𝑛, the manager's order has Ni shares with price pi per share. The basket is 

being auctioned to a number of K participating brokers. The individual stock names 

are unknown to the brokers who have to submit a bid, expressed as cents per share.  

bk is the bid of the kth broker with 𝑘 ൌ 1, … 𝐾. The asset manager pays the net proceeds 

(purchases minus sales) plus the commission to the winning bidder who has a short 

period of time, usually three days, to fulfill all the transactions ordered by the client. 

Let 𝑠 be the amount of the current market value of the order for each stock i and Ri 

is the total amount that was actually received when selling or paid when buying for 

the fulfillment of the transaction related to the order of each stock i. The brokers are 

interested in the difference 𝑅 െ 𝑠 . It is obvious that 𝑠 ൌ 𝑁𝑝 , where 𝑝 , is most 

recent closing price for stock 𝑖. Therefore, in a BPB all the prices are predetermined. 

Net Proceeds are given as ∑ 𝑠

ୀଵ  while the commission is calculated by 𝑏𝑁, where 

𝑏 is the winning bid and 𝑁 ൌ ∑ 𝑁

ୀଵ .  

Let  �̅� ൌ
௫భା௫భା…ା௫


 where 𝑥 ൌ 𝑅 െ 𝑠, is the transaction gains or losses for the 

broker. Furthermore let 𝑙 be the expected execution cost from slippage for asset i and 

so, 𝑇 ൌ ∑ 𝑙

ୀଵ  expresses the expected execution cost from slippage for the portfolio. 

The optimization problem for broker k is 
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Maximize E 𝑏𝑁 
 

Subject to (1) 

PሺbN  n �̅�> 0)  δ 
 

The parameter δ represents the maximum acceptable probability to experience a 

loss. The broker k believes that all 𝑏, 𝑖 ് 𝑘, are uniformly distributed between 0 and 

θ where θ could be considered as the average cost per share of the agency trade for 

this portfolio. This is the sum of the typical commission plus 
ఁ

௺
. The above 

optimization problem has only one constraint where δ determines the confidence level 

of the broker that his final profit will be positive. We assume that  𝑥 , 𝑖 ൌ 1, … 𝑛, are 

independent normally distributed variables but not identical as transactions can be of 

different sizes. A similar analysis with independent n positions of a portfolio is 

presented by Dembo et al. (2004). The main result of the above paper is an application 

of Bahadur and Rao's Theorem. Bahadur and Rao's work involved ordinary sums of 

i.i.d. random variables. The LD argument that is used in our study could be considered 

as an extension of the theorem of Bahadur and Rao to the case of weighted sums of 

i.i.d. continuous random variables. This is a well-known LD theorem developed by 

Book (1972).  
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3. Large Deviations 

The seller always provides to the broker the volatility of the buy basket, the 

volatility of the sell basket and the volatility of the entire basket as well [see Giannikos 

et al. (2012)]. Suppose that the volatility of the total dollar value of the basket is 

represented by σ. The distribution of the weights in the basket is commonly provided 

to the brokers. Therefore, the following analysis could be easily used by one of the 

participating brokers before the auction. Although our LD approach could be used for 

a number of distributions with finite moment generating functions, we assume, for 

simplicity, that the implementation shortfall is normally distributed around an 

expected value as modelled by Almgren et al. (2005).  

 

Suppose 𝑅 is normally distributed with mean 𝑠   𝑙 and variance 𝑤𝜎ଶ then 

∑ 𝑤 ൌ 1
ୀଵ . Define 𝑦 ൌ

 ோି ௦ି 

ඥ ௪ఙ
ൌ

  ௫ି 

ඥ ௪ఙ
 and 𝑧 ൌ െ𝑦. Thus 

𝑧~𝑁ሺ0,1ሻ. Obviously, 

Pሺ𝑏N  n �̅�  0ሻ =  Pሺ𝑏N  𝜎 ∑ ඥ 𝑤 𝑦

ୀଵ  𝑇> 0)  =1- Pሺ𝑆  𝑐 ∑ 𝛼


ୀଵ )  , 

where c = 
ೖேା்

ఙ ∑ ఈ

సభ

 , 𝑎 ൌ ඥ 𝑤, 𝑖 ൌ 1, … , 𝑛, and 𝑆 ൌ ∑ 𝛼

ୀଵ 𝑧.  

Therefore, PሺbN  n 𝑥 ഥ  > 0) = 1 െ Pሺ𝑆  𝑐 ∑ 𝛼

ୀଵ ሻ  𝛿. Now we use a theorem 

developed by Book (1972) with the following conditions: Assume a sequence 𝑌 ൌ

ሼ𝑌: 1 ൏ 𝑖 ൏ 𝑛ሽ  of i.i.d. random variables, 𝐸ሾ𝑌ሿ ൌ 0 and 𝐸ሾ𝑌ଶሿ  = 1. Let ሼ𝑎: 1 ൏

 i ൏ 𝑛, 1 ൏ 𝑖 ൏ ∞ } be double array of nonnegative real numbers such that, 

∑ 𝑎
ଶ ൌ 1

ୀଵ . We work with an approximation of Pሺ𝑆  𝑐 ∑ 𝛼

ୀଵ ) as n → ∞. Let 

𝜑ሺ𝑡ሻ to be the moment-generating function of 𝑦 . Suppose 𝑄ሺ𝑡ሻ ൌ
ఝᇱሺ௧ሻ

ఝሺ௧ሻ
 and, 𝜎ത

ଶ ൌ

𝑉𝑎𝑟ሺ𝑆̅ሻ ൌ  ∑ 𝑎
ଶ

ୀଵ 𝑄ᇱሺℎ𝑎ሻ , where ℎ  is a solution ∑ 𝑎

ୀଵ 𝑄ሺℎ𝑎ሻ ൌ

 c ∑ 𝑎

ୀଵ . Then Book (1972) proves that 
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Pሺ𝑆  𝑐 ∑ 𝛼

ୀଵ ሻ 

=ሺ2𝜋ሻି
భ
మሺ𝜎തℎሻିଵ expሺെℎ𝑐 ∑ 𝛼


ୀଵ ሻ൫∏ 𝜑ሺℎ𝑎ሻ

ୀଵ ሺ1  𝑂ሺ𝜎ሻ൯, 
(2) 

where 

Oሺ𝜎ሻ → 0 as n→ ∞ 

The main result of this study is established under the same conditions and given below. 

Theorem 

If implementation shortfall is normally distributed for the assets of the portfolio, 

an LD approximation for the optimal bid b* is given by max ቄ 
ఏ

ିଵ
,

ఙ ఒି்

ே
 ቅ, where λ is 

the infimum of set L, L is the solution set of the inequality lnሺ𝑥ሻ 
ଵ

ଶ
𝑥ଶ  𝑞  0, and 

qൌ  ln ൫ሺ1 െ 𝛿ሻ√2𝜋൯. δ represents the maximum acceptable probability to experience 

a loss, π is the irrational number 3.14…, Τ expresses the expected execution cost from 

portfolios’ slippage, σ is the volatility of the total dollar value of the basket, and Ν is 

the total number of shares. 

Proof 

Fix n and define 𝛢 ൌ ∑ 𝑎

ୀଵ . Thus  𝑐 ൌ

ೖேା்

ఙ௮
is a constant. Since  𝑧~𝑁ሺ0,1ሻ, 

then  

φ(t) = 𝑒
భ
మ

௧మ
 and Q(t) = t, Then solving equation ∑ 𝑎


ୀଵ 𝑄ሺℎ𝑎ሻ = c , we get  ℎ ൌ

ೖேା்

ఙ
. Therefore (2) is equivalent to  

Pሺ𝑆  𝑐 ∑ 𝛼

ୀଵ ሻ  ൌ

ଵ

√ଶగ

ఙ

ೖேା்
exp ൬ െ

ଵ

ଶ
ቀ

ೖேା்

ఙ
ቁ

ଶ
൰. 

And the constraint of the optimization problem (1) is written 

1 െ
1

√2𝜋

𝜎
 𝑏𝑁  𝑇

exp ቆ െ
1
2

൬
𝑏𝑁  𝑇

𝜎
൰

ଶ

ቇ  𝛿 

Simple algebraic calculations show that b should be a solution of the below inequality 
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    ln ൬
𝑏𝑁  𝑇

𝜎
൰ 

1
2

൬
𝑏𝑁  𝑇

𝜎
൰

ଶ

 𝑙𝑛൫ሺ1 െ 𝛿ሻ√2𝜋൯  0 (3) 

A solution set for b exists. Let L be the solution set of the above inequality (3).  

Since the bids in the blind auction are uniformly distributed, the probability of win for 

the submitted bid is given as ቀ
ఏିೖ

ఏ
ቁ

ିଵ
. The expected revenue for the participating 

broker is  

𝐸ሺ𝑅𝑒𝑣𝑒𝑛𝑢𝑒ሻ ൌ 𝑏N ቀ
ఏିೖ

ఏ
ቁ

ିଵ
. The solution for 

డாሺோ௩௨ሻ

డఏ
ൌ 0 is  𝑏 ൌ

ఏ

ିଵ
. Since 

𝐸ሺ𝑅𝑒𝑣𝑒𝑛𝑢𝑒ሻ is a decreasing function of b in the interval ቀ 
ఏ

ିଵ
, 𝜃ቁ then the solution 

b* of the problem (1) is given by  𝑏∗ ൌ 𝑚𝑎𝑥 ቄ 
ఏ

ିଵ
,

ఙ ఒି்

ே
 ቅ, where λ is the infimum of 

set L, L is the solution set of the inequality lnሺ𝑥ሻ 
ଵ

ଶ
𝑥ଶ  𝑞  0  and 𝑞 ൌ

 ln ൫ሺ1 െ 𝛿ሻ√2𝜋൯. 

4. Numerical Example 

In this section, we develop a numerical example that compares the large 

deviation (LD) theoretical model and an approximation by Monte Carlo simulation. 

Giannikos et al. (2012) use a sample of 140 baskets. Based on their summary statistics, 

the mean number of stocks in a basket was 234, the average total trade size was $352 

million and the mean number of shares per basket was 12 million while the average 

winning bid cost was 45 basis points. The cost of principal bid is expressed in basis 

points, as the ratio of total execution cost to the basket's market value.  
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Figure 1. LD vs Monte Carlo (Basket Volatility σ =100,000) 

 
Kavajecz and Keim (2005) use a sample of 48 completed basket and 35 passed baskets. 

The mean number of stocks in a basket was 163, the average total trade size was $ 

88.97 million and the mean number of shares per basket was approximately 4 million. 

By selecting parameters within the range presented in the literature, we assume that 

the client wants to sell a portfolio with 163 assets and a total of 5 million shares, i.e. 

N=5,000,000 and n=163. The weights 𝑎 of each asset in this basket were produced 

by a uniform distribution such that ∑ 𝑎
ଶ ൌ 1

ୀଵ . For this numerical example 𝐴 ൌ

∑ 𝑎

ୀଵ ൌ 12.1. Let the dollar value of the portfolio to be 90 million. Figure 1 shows 

how the probability of a broker observing a positive profit depends on the level of the 

winning bid fee. Monte Carlo simulations (with 1 million scenarios) are compared 

with the LD method developed in this paper. Based on the Figure 1, as the bid fee 

increases, the risk of a loss is mitigated, and the probability of positive profits tends 

to be 1. For example, a broker with a submitted winning bid fee of 6 cents per share 

knows that the probability to observe a loss is approximately 0.0021, based on the LD 

model. A winning bid fee of 6 cents sets out the cost of principal bid to 33 basis points. 
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Also, we have assumed a volatility σ =100,000 for this basket. This assumed value 

for the volatility depends on the broker’s expectations regarding crossing shares with 

his own inventory which will mitigate the execution cost from slippage. Thus, the 

variability in the submitted bids reflects the different expectations of the brokers 

regarding the volatility of the basket which is related to their estimate of their own 

trading abilities and circumstances (for instance their current inventory). Naturally, a 

riskier basket will increase the cost of principal bid. As we observe in Figure 2, for a 

basket with the same characteristics and double volatility, the original graph is shifted 

to the right reflecting this increase in the cost of the principal bid. Not surprisingly, 

similarly consistent with intuition shifts would be observed when other characteristics 

are modified, such as the expected execution cost from slippage. 

Figure 2. LD vs Monte Carlo (Basket Volatility σ =200,000) 
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5. Conclusion 

Since a significant percentage of the daily trading volume in major stock 

exchanges involves principal bid transactions, BPB is considered as one of the most 

important trading mechanisms. This paper extends the literature on this topic by 

introducing a model that formulates the optimal bid that should be submitted by the 

broker. Although the model has been created from the broker's perspective, it may be 

beneficial for the clients as well. This LD model approximates precisely the 

probability of a harmful rare event, allows to develop a closed-form solution, and 

helps the broker to connect his potential bids with the probability of observing a 

positive profit. The brokers’ inability to model the uncertainty they face, as a result of 

the blind process of these transactions, is the main reason why the observed submitted 

bids are very high and often leads clients to choose an agency trade after receiving the 

bids. A numerical example illustrates how close the LD solution is to the Monte Carlo 

approximation. Finally, the development of a closed formula for the optimal bid in the 

case of more involved market impact models could be the subject of further research. 
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