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Abstract 
 This paper presents a generalized serial covariance spread pricing model that unifies 
and improves existing spread models. We analyze three cost components of spread: order 
processing, adverse information, and inventory holding costs. We modify Stoll’s (1989) 
model by incorporating a two-period conditional probability trading model to derive a new 
spread estimator. We propose a methodology to estimate the input parameters. We then show 
this extended model potentially avoids some of the limitations associated with earlier models. 
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1. Introduction 

We derive the spread in the serial covariance model from the statistical proper-
ties of price changes. We first estimate the serial covariance of price changes and 
then use that estimate to infer the spread. This indirect approach differs from the 
usual methods of directly calculating the spread. Roll (1984) derives an implicit 
spread estimator in the equity market. He observes that the quoted spread is not 
necessarily equal to the effective spread, and sometimes the quoted spread overstates 
the real transaction costs faced by traders. He thus uses a relationship between 
transaction price changes to estimate indirectly the effective spread in an efficient 
market, and his method basically only requires the transaction prices themselves. 

Stoll’s (1989) work builds on that of Roll (1984). Traditional bid-ask spread 
models use the inventory liquidation mechanism, transaction costs, or informational 
asymmetry to explore the spreads, but in this paper we will identify these different 
cost components of the spread by studying the transaction types and the statistical 
properties of transaction price changes. We will first introduce the notion of Roll’s 
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simple bid-ask spread estimator and then extend the more complicated estimators 
which have been developed by Stoll (1989) and others in order to improve their po-
tential applications.  

Recently there has been concern over the performance of the Roll (1984) and 
Stoll (1989) estimators. George et al. (1991) allow for time-varying returns and im-
plement their model only requiring one auto-covariance. Brooks and Masson (1996) 
report that the estimator of the realized spread suggested by Stoll suffers from diffi-
culty in estimating quotes and price change covariances. Moreover, upon applying 
the Stoll’s technique, they find that the estimated spread ranges from 14% to 257% 
of actually quoted spreads in a sample of NYSE stocks. Lesmond et al. (1999) report 
similar problems in the George et al. (1991) model as in that of Stoll (1989). It is 
clear that these estimators have serious problems and there is scope for an improved 
model. 

Our new model allows for the existence of the order processing costs as well as 
inventory holding costs and asymmetric information costs. This permits us to get rid 
of the assumption of the independence of successive trades and allows for the pres-
ence of serially correlated effects. As such, our model easily accommodates price 
reversal effects that can be brought about by asymmetric information and inventory 
holding costs. Such price reversal effects are absent in the models we generalize.  

We organize our paper as follows. Section 2 presents the theory and proposes a 
more generalized serial covariance spread model, which not only reconciles the 
above models but also considers the different cost components of the spread. In Sec-
tion 3, we discuss how to estimate the parameters in our model. Section 4 proposes 
new ways to apply this new model in empirical research. We then conclude and 
summarize our results. 

2. Background and Model Development 

Under Roll’s ideal market assumptions, the possible paths of successive trans-
action price changes are restricted. Since transaction prices can only bounce either at 
the ask price or at the bid price, he derives the spread estimator by computing the 
combined joint distribution of successive price changes. His spread estimator results 
from solving: ))(()()())((),( 1111 tttttttt PPEPEPEPPEPPCOV  
= (1/8)(−S2−S2) = −S2/4. His effective (implied) spread estimator is: 

),(2 1tt PPCOVS . (1) 

However, earlier studies such as Garbade and Lieber (1977) report that ask (bid) 
orders are more likely to follow ask (bid) orders and are therefore serially dependent. 
If future prices are not independent of current prices, then Roll’s technique is no 
longer appropriate. 

Choi et al. (1988) modify Roll’s estimator and introduce an unequal and seri-
ally-correlated assumption regarding order arrivals. They allow for the conditional 
probability of a transaction at the bid (ask) following one at the bid (ask) to be dif-
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ferent from 0.5. They derive their new spread estimators by computing the combined 
joint distribution of successive price changes. 

Their model implies that 22
1 )1(),( δSPPCOV tt , and the effective 

spread, S, can be derived as: 

δ
PPCOVS tt

1
),( 1 , (2) 

where δ is the conditional probability that the transaction at time t+1 is at the bid 
(ask) price given that the transaction at time t is at the bid (ask) price.  

Chu et al. (1996) develop another generalized model by further considering the 
possibility of a transaction type conditional upon two preceding transaction periods 
rather than one preceding period as that in Choi et al. (1988). They incorporate not 
only δ as the conditional probability of a subsequent transaction being the same type 
as that of the current transaction but also (1)  as the conditional probability of the 
next transaction being the same type as the current type but different from the pre-
vious type and (2)  as the conditional probability of the next transaction being the 
same type as both the current type and the previous type. 

If the initial transaction is a bid transaction, the paths are similar by symmetry. 
This implies that in their model 22

1 2/)1)(1(),( SδαSPPCOV tt  
)1)(1(2/)1)(1( 2 δαSδα , and rearranging S to the left-hand-side results 

in: 

)1)(1(
),( 1

αδ
PPCOVS tt . (3) 

However, the original Roll model and the modified models above still focus on 
the existence of the order processing costs while the other two critical costs usually 
mentioned in the literature—namely, the inventory holding costs and asymmetric 
information costs—are ignored. Thus no inventory adjustment is considered and 
independence of trade flows is assumed. Their models generally focus on modifying 
the serial correlation of transaction types while the price reversal effects caused by 
holding inventory and facing asymmetric information simply disappear.  

Stoll (1989) decomposes the possible reasons for security price changes ( T ) 
into three possible changes: the changes due to the basic security characteristics (SC), 
the price changes due to the bid-ask bounce ( P ), and the price changes due to new 
information (e). The total price changes are as follows: 

ttt ePSCT . (4) 

The most important assumption is that in an informationally efficient market 
the price changes resulting from new information are independent and also are un-
correlated with lagged and leading values of the price changes due to the spread, 
while et is assumed to be white noise with a zero mean and a constant variance. Up-
dating 111 ttt ePSCT  implies that the serial covariance of price changes 
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becomes: 

),(),(),( 111 tttttt ePCOVPPCOVTTCOV   
),(),( 11 tttt eeCOVPeCOV  (5) 

),( 1tt PPCOV .  

Thus, in an informationally efficient market, the spread is the only possible 
cause for the serial covariance of price changes in this model. If a transaction starts 
at the bid price, it can only take on two possible values: (1) SλBA tt )1(1  
with probability π  or (2) SλBB tt )( 1  with probability 1−π, where A is the 
ask transaction, B is the bid transaction, π  is the probability of a price reversal, and 
1−λ represents the magnitude of a price reversal as a fraction of the spread, S. Simi-
larly, if the preceding transaction is at the ask price, then P  can take on only two 
values: (1) SλAB tt )1(1  with probability π  or (2) SλAA tt 1  with 
probability 1−π. A price reversal is defined as a trade occurring at the bid (ask) and 
the next trade occurring at the ask (bid). 

Stoll shows that the dealer’s compensation for order processing and inventory 
costs—that is, the expected revenue earned on a round-trip trade—is equal to 

)(2 λπS  and that )(21 λπS  reflects the asymmetric information component 
of the spread. The order processing and inventory costs can be further decomposed 
into )5.0(2 πS  and S(1−2λ), respectively, with the former being the inventory 
costs and the latter reflecting the compensation for order processing costs. Thus, by 
using the serial covariance of buy and sell transaction prices, π  and λ can be esti-
mated. 

Based on these arguments, Stoll derives the serial covariance of transaction 
price changes as: 

)21()21(),( 222
1 λππλSPPCOV tt . (6) 

Stoll models the probability of price reversal depending only on the preceding 
period. Thus, his one-period conditional probability is: 

P(At | At−1) = P(At+1 | At) = P(Bt | Bt−1) = P(Bt+1 | Bt) = 1−π 
P(At | Bt−1) = P(At+1 | Bt) = P(Bt | At−1) = P(Bt+1 | At) = π. 

In our study we allow for transaction reversals to follow a two-period condi-
tional probability distribution. In particular, the transaction type does not merely 
depend on the previous period but also on the period before that. Figure 1 shows the 
bid-ask probability and reversal determination diagram under the new probability 
assumptions. 

Statistically, the new probability assumption in Figure 1 can be summarized as: 

P(At+1 | At−1, At) = P(Bt+1 | Bt−1, Bt) = 1−α 
P(At+1 | Bt−1, Bt) = P(Bt+1 | At−1, At) = α 
P(At+1 | At−1, Bt) = P(Bt+1 | Bt−1, At) = β 
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P(At+1 | Bt−1, At) = P(Bt+1 | At−1, Bt) = 1− β. 

Figure 1. The Probability and Reversal Structure of Trade 
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Note: A is the ask transaction; B is the bid transaction; 1−λ is the magnitude of a price reversal as a frac-
tion of the spread, S; and , , and  are conditional probabilities of price reversal under different condi-
tions. (The probability of transaction type at time t−1 is assumed to be equally likely at bid or ask.) 

In this model we assume that the size of spread is constant at each point in time. 
Based on the transaction process depicted by Figure 1, a more generalized model 
can be obtained. Assuming the initial trade at t−1 occurs with equal probability at 
either the bid or the ask, the new joint probability distribution of successive transac-
tion price changes is shown in Table 1. The serial covariance of transaction price 
changes is: )1()1()1()1)(1(),( 22

1 λSλαπSλSλαπSλPPCOV tt  
)π)()(λ)21((π)1()1( 2222 βαπλβαππλSβSλβπS . 

 The effective spread, S, can be derived as: 

)λλ(λ)(λ)21(
),(

2
1

βαπβαππλ
PPCOVS tt . (7) 

If the price reversal always equals the spread, i.e., λ = 0 and 5.0βαπ , 
then (7) simply reduces to the Roll’s serial covariance model. If βαπ , it re-
duces to Stoll’s model. If there is no price reversal effect (λ = 0), then it reduces to 
the estimator developed by Chu et al., if there is no price reversal effect and β = π, 
then it reduces to Choi et al.’s model. Therefore, our proposed model will include 
Roll’s and other more recent estimators as special cases. Our model always gener-
ates a spread estimator that is positive. This is not the case for models that rely on 
negative covariances to generate a positive estimator. 
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Table 1. The New Combined Joint Distribution of Successive Price Changes 

   Pt  

  Initial Trade at Bid Initial Trade at Ask 

  −λS (BB) (1−λ)S (BA) λS (AA) −(1−λ)S (AB) 

 −λS (BB) (1− )(1− ) 0 0 (1− ) 

Pt+1 (1−λ)S (BA) (1− )  0 0  

 λS (AA) 0 (1− ) (1− )(1− ) 0 

 −(1−λ)S (AB) 0  (1− )  0 

3. Estimation Procedure 

Under the serial covariance model, only the transaction price data are employed 
instead of the quoted bid-ask prices. Therefore, we need a classification procedure to 
identify each time series transaction prices as either a bid or an ask. The tick test 
discussed by Lee and Ready (1991) as well as Aitken and Frino (1996) can be used 
for this purpose. The tick test classifies a trade as an ask (market buyer initiated) if it 
occurs on an uptick or zero-uptick; otherwise it is identified as a bid (market seller 
initiated). An uptick (downtick) is defined as if the current price is higher (lower) 
than the price of the previous transaction. When the current price is the same as the 
previous trade (a zero tick), if the last price change was an uptick (downtick), then 
the trade is a zero-uptick (zero-downtick). Lee and Ready provide the empirical 
support by claiming a high accuracy rate as 90%. Aitken and Frino report a lower 
overall accuracy rate as 74%. 

In addition to the trade type, from (7), there are also several input parameters 
we need to estimate before computing the serial covariance spread. These parame-
ters can be estimated by the maximum likelihood estimation technique. For the es-
timation of the conditional probability π, the likelihood function can be specified as: 

n

t
tt IπIππL

1
)1)(1()( , (8) 

where n is the total number of observations used, It = 1 if a trade in time t is different 
from the trade type in time t−1, and It = 0 otherwise. The maximum likelihood esti-
mator (MLE) of π is derived by finding the value of that maximizes the following 
log likelihood function: 

n

t
tt IπIππL

1
)1)(1(ln)(ln   

)1)(1(ln......)1)(1(ln 11 nn IπIπIπIπ .  
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Therefore, the resulting MLE estimator of π is: 

n
I

π
n
t t1 . (9) 

Similarly, the conditional probabilities α and β are estimated by the MLE as 
shown by Chu et al.: 

),,(),,(),,(),,(
),,(),,(ˆ

11111111

1111

tttttttttttt

tttttt
BBBNABBNAAANBAAN

ABBNBAANα ,  

),,(),,(),,(),,(
),,(),,(ˆ

11111111

1111

tttttttttttt

tttttt
AABNBABNBBANABAN

BABNABANβ , (10) 

where N is the number of occurrences with respect to a particular event described in 
the parenthesis. From the properties of the maximum likelihood function, π̂ , α̂ , 
and β̂  are unbiased, efficient, and consistent estimators of π , α , and β , respec-
tively. 

Since this study produces an improved version of the previous serial covariance 
spread estimators, in addition to being a more accurate measure of the serial correla-
tion relationship among trade types, the magnitude of price reversal, 1−λ, plays a 
very important role in order to infer the different cost components in the bid-ask 
spread. Recall that if either the inventory adjusting costs or asymmetric information 
costs are present, the magnitude of price reversal is no longer equal to the spread, S, 
and thus λ is not constrained to zero. 

Here the magnitude of price reversal, 1−λ, is expressed as a percentage of the 
quoted spread and thus the magnitude of price continuation, λ, must be estimated 
first. Mathematically λ can be expressed as: 

S
BPBPP

S
APAPPλ tttttttttt 111111 ,, , (11) 

where 1tP  denotes the transaction price at time t+1 and thus ttt PPP 11  is 
the price difference between two periods conditioning upon whether the transaction 
prices at times t and t+1 are of the same transaction type. 

So we can use the following formula to estimate λ̂ : 

SBPBPkAPAPh
PP

λ
tttttttt

h
n

k
n nn 1

),(),(
ˆ

1111

1 1 , (12) 

where h (k) is the number of occurrences when the transactions at both time t+1 and 
time t are an ask (a bid); P  denotes the corresponding price change. To obtain S, 
we need the quoted bid and ask price data to calculate it as the average of absolute 
quoted spreads. 
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4. Conclusions 

In this paper we present a more generalized dealer spread pricing model in 
which the existing spread models are unified and three cost components of 
spread—order processing, adverse information, and inventory holding costs—are 
considered. In particular, this model is extended in two ways from the previous 
models to estimate the bid-ask spread. The first extension relies on the fact that only 
considering the serial correlation of transaction types cannot capture all components 
of the spread. The second extension improves the Stoll’s approach, which is the first 
to mathematically decompose the three components of the spread by taking into ac-
count not only the magnitude of price reversal but also a two-period serial correla-
tion of transaction types. 

This new statistical spread estimator can be applied to (1) more accurately es-
timate the effective spread [by using the formula in (7)] and (2) improve the results 
of Stoll among others in decomposing three cost components of the spread. Many 
other applications can also be found in a number of ways, such as to determine the 
sources of spread variations during the day, to compare between dealer and auction 
markets, to compare across trade sizes, to compare markets with different geo-
graphical locations, or to assess the effect of a particular event on the spread com-
ponent. 
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