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Abstract 
A quasi-Bayesian model selection approach is employed to detect the number and dates 

of structural changes in China’s GDP and labour productivity data. It is shown that the predic-
tive likelihood information criterion is valid only among models with well-behaved residuals. 
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1. Introduction 

The literature on structural change in macroeconomic time series has been 
growing rapidly over the past decade. From a methodological point of view, such 
studies may be classified into two categories: one that adopts a hypothesis testing 
approach, and the other that takes a model selection approach (see Maddala and Kim, 
1998, p. 406). Regarding hypothesis testing, there are two broad avenues to view. 
Tests of the unit root null hypothesis with or without structural change against the 
trend-stationarity alternative that allows for one or more breaks in the trend function 
fall into the first. Contributions in this area include Perron (1989), Inwood and 
Stengos (1991), Zivot and Andrews (1992), Raj and Slottje (1994), Perron (1997), 
Nunes et al. (1997), Lumsdaine and Papell (1997), Kanas (1998), Ben-David et al. 
(1999), and Newbold et al. (2001). The second line involves testing for alternative 
hypotheses against each other with respect to the number of breakpoints in the series, 
disregarding whether or not a unit root is present. Several testing techniques have 
recently been developed by Vogelsang (1997), Bai and Perron (1998), and Bai (1999) 
and applied in Ben-David and Papell (1998) and Ben-David and Papell (2000).  

The problem of choosing between difference-stationary models and 
trend-stationary models that account for structural change and between models with 
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different numbers of breaks can also be tackled by a model selection approach. In 
fact, it should properly be so, as Maddala and Kim (1998) argue that ultimately de-
termination of the number of breaks is best viewed as a model selection problem. 
However, the structural-change literature with model selection does not seem to be 
as vast as with hypothesis testing. Kim and Maddala (1991) propose a Bayesian ap-
proach which uses the BIC criterion for selecting the best model among the models 
with different numbers of breaks. A recent paper by Wang and Zivot (2000) also 
employs similar methods to select the most appropriate model from the data. While 
the above two studies may be categorised as following a Bayesian approach, Kashi-
wagi (1991) suggests what Maddala and Kim (1996a) term a “quasi-Bayesian” ap-
proach that uses the predictive likelihood in analysing the same problem of detecting 
structural changes. Bianchi (1995) extends this quasi-Bayesian approach to the case 
of autoregressive errors, and Bianchi and Kan (1996) apply the extended method in 
a study of the trend behaviour of the US GNP series. For differences between the 
Bayesian and quasi-Bayesian procedures, see Maddala and Kim (1996b). 

More work needs to be done to compare the above two independently devel-
oped procedures for selecting the best model among alternatives with different 
numbers of breaks (Maddala and Kim, 1996b). This paper is part of the empirical 
work for that purpose. It reports the results of applying the quasi-Bayesian approach 
to detecting the structural breaks in China’s GDP and labour productivity data, 
which may be used later for comparisons with the results of applying the Bayesian 
approach. Section 2 briefly describes the approach employed, Section 3 presents 
empirical results, and Section 4 concludes. 

2. Predictive Likelihood 

Consider a time series model with multiple breaks as follows: 

1 1
n n

t i it i it ti iy a bt a DU b DT e= == + + + +∑ ∑ . (1) 

In this model, yt is a time series under investigation, t represents time trend, n is 
the number of breakpoints, et denotes the error term, and a, b, ai, and bi are model 
parameters to be estimated. The break dummy variables, DUit and DTit, take the fol-
lowing values: 
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0 otherwise
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with the ranges of n break dates being: 

1 < TB1 < … < TBi < … < TBn < T. 

Here T denotes the effective sample size and TB1, …, TBn are n break dates. We as-
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sume that the errors et follow an AR(p) process with the order p to be determined. 
The breakpoints (including their number and timing) are to be searched for with the 
aid of the predictive likelihood information criterion as briefly described below.  

If p = 0, the errors are serially independent and so the predictive likelihood cri-
terion suggested by Kashiwagi (1991) is relevant, and its value, PL, is computed as: 

2 ( 1)ln(2 )
2 2 2
T T T kPL

T k
πσ +

= − − −
− −

, (2) 

where σ2 is the variance of et and k is defined as k ≡ 2(n+1) – m1. Here m1 is the 
number of the periods that have only one observation.  

If p > 0, the errors et become an autoregressive process of order p: 

1 1 2 2 ...t t t p t p te e e eµ µ µ ε− − −= + + + + , et ~ N(0, 2
εσ Ωp), εt ~ N(0, 2

εσ ), (3) 

where µ1, …, µp are parameters and εt represents a normally, independently and 
identically distributed (NIID) error term. In this case, a heuristic criterion proposed 
by Bianchi and Kan (1996) may be employed. It is expressed as: 

( )2 ( 1)ln(2 ) ln
2 2 2P
T T T kPL

T kεπσ +
= − − − Ω −

− −
, (4) 

with k ≡ 2(n+1) – m1 + p. The idea behind adding p to the expression for k is to pe-
nalise for the number of autoregressive terms in the errors.  

Equation (1) is estimated with the ordinary least square (OLS) method when p 
is assumed to be 0 and with the maximum likelihood method when p is assumed to 
be greater than 0. In the former case, use (2) to calculate PL. In the latter case, sim-
ply deducting from the estimated value of the log-likelihood function the bias cor-
rection term T(k+1)/(T−k−2) will give PL. 

3. Empirical Results 

We apply the above-outlined methods to China’s output (GDP) and labour 
productivity (PRO) annual data (in log form) obtained from the China Statistical 
Yearbooks for 1998 and 2000 and from http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/ 
t20020331_15395.htm: “The 2000 Statistical Communiqué of National Economy 
and Social Development, February 28, 2001” (in Chinese). The sample spans from 
1952 to 2000, giving us a total of 49 observations. 

Tables 1 to 4 display the models with the number of breaks associated with the 
highest PL values under four different assumptions about the error terms. They also 
report diagnostic statistics about the behaviour of the error terms. In particular, both 
the Ljung-Box Q and the Breusch-Godfrey (B-G) statistics are used to check for the 
presence of serial correlation. Since the former is valid only for a pure autoregres-
sive process while the latter is also valid in the case where such variables as trends 
and dummies appear as regressors, we mainly rely on the latter for inference.  
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If only the predictive likelihood criterion is used, one would certainly pick out 
the models in Table 1 and conclude that GDP has 10 structural breaks and labour 
productivity has 9. However, although the Q statistics suggest that the assumption of 
independent errors cannot be rejected at the 5% level, the B-G statistics indicate a 
decisive rejection at a lower than 1% level for the two series. In addition, the pro-
ductivity data suffer the problem of heteroscedasticity. Thus, the models that assume 
et to be an NIID error are not valid, and the two numbers of breakpoints suggested 
by the highest PL values may well be overestimated. 

Table 1. The Selected Model When the Errors Are Assumed to Be AR(0) 

Series n  PL Q(10) B-G(10) Normality ARCH(3) 

GDP 10 91.860 16.358 [0.090] 28.668 [0.001] 0.233 [0.890] 5.817 [0.121] 

Productivity 9 99.283 18.248 [0.051] 26.655 [0.003] 1.396 [0.497] 8.631 [0.035] 
Notes: For GDP, the 10 break dates are 1958, 1960, 1962, 1967, 1969, 1970, 1976, 1984, 1989, and 
1993. For productivity the 9 break dates are 1961, 1963, 1966, 1969, 1971, 1976, 1984, 1990, and 1996. 
Numbers in parentheses are the lag lengths, and numbers in brackets are the p-values. 

Table 2. The Selected Model When the Errors Are Assumed to Be AR(1) 

Series n  PL Q(10) B-G(10) Normality ARCH(3) 

GDP 7 85.243 35.961 [0.000] 29.757 [0.001] 0.497 [0.780] 5.253 [0.154] 

Productivity 11 99.199 23.762 [0.008] 64.470 [0.000] 0.321 [0.851] 2.496 [0.476] 
Notes: For GDP, the 7 break dates are 1958, 1960, 1962, 1966, 1969, 1971, and 1976. For productivity 
the 11 break dates are 1954, 1960, 1962, 1966, 1969, 1971, 1976, 1981, 1984, 1990, and 1996. Num-
bers in parentheses are the lag lengths, and numbers in brackets are the p-values. 

Table 3. The Selected Model When the Errors Are Assumed to Be AR(2) 

Series n  PL Q(10) B-G(10) Normality ARCH(3) 

GDP 5 90.681 11.017 [0.356] 0.219 [0.640] 3.351 [0.187] 5.644 [0.130] 

Productivity 4 91.963 13.106 [0.218] 0.021 [0.884] 0.632 [0.729] 0.935 [0.432] 
Notes: For GDP, the 5 break dates are 1957, 1961, 1966, 1975, and 1977. For productivity the 4 break 
dates are 1956, 1961, 1976, and 1990. Numbers in parentheses are the lag lengths, and numbers in 
brackets are the p-values. 

Table 4. The Selected Model When the Errors Are Assumed to Be AR(3) 

Series n  PL Q(10) B-G(10) Normality ARCH(3) 

GDP 7 90.029 29.779 [0.001] 28.077 [0.002] 0.144 [0.931] 4.262 [0.234] 

Productivity 4 84.310 19.738 [0.032] 18.346 [0.031] 0.148 [0.929] 3.810 [0.282] 
Notes: For GDP, the 7 break dates are 1956, 1958, 1960, 1968, 1971, 1974, and 1976. For productivity 
the 4 break dates are 1957, 1961, 1976, and 1990. Numbers in parentheses are the lag lengths, and 
numbers in brackets are the p-values. 

The models with AR(1) and AR(3) specifications for et do not qualify for a 
clean bill of health either. Tables 2 and 4 show that both the Q and B-G statistics 
signal serial correlation in εt, although normality and homoscedasticity are present. 
The only valid models seem to be those given in Table 3: incorporating the AR(2) 



Xiao-Ming Li 61

assumption for et now makes εt a NIID process, as suggested by all the reported di-
agnostic test statistics. Accordingly, 90.681 and 91.963 are the only valid highest PL 
values for the GDP and productivity data respectively, and the associated numbers of 
breaks are 5 for the former and 4 for the latter. Table 5 presents more details about 
the PL values and break dates for the models with AR(2) error terms, and the two 
columns with bold numbers represent the two best models among them for the two 
series respectively. 

Table 5. The PL Values and Break Dates When the Residuals Are Assumed to Be AR(2) 

GDP 0n =  1n = 2n = 3n = 4n = 5n = 6n =   
PL 54.234 67.767 80.099 88.880 89.892 90.681 90.372 
TB1  1961 1961 1957 1957 1957 1957 
TB2   1976 1961 1961 1961 1961 
TB3    1976 1966 1966 1968 
TB4     1976 1975 1970 
TB5      1977 1975 
TB6       1980 

Productivity 0n =  1n = 2n = 3n = 4n = 5n = 6n =  
PL 55.154 67.447 77.411 86.156 91.963 91.290 90.564 
TB1  1961 1961 1961 1956 1956 1956 
TB2   1976 1976 1961 1961 1961 
TB3    1990 1976 1973 1966 
TB4     1990 1976 1969 
TB5      1990 1976 
TB6       1990 

It is interesting to compare our results with those in Bianchi and Kan (1996). 
They show that the predictive likelihood approach is robust to different assumptions 
about the error terms et, as the number of structural breaks turns out to be the same 
(n = 2), and the parameter estimates for different error specifications are not very 
different. However, this conclusion does not apply in our study here, since we find 
that the number and the dates of breaks are sensitive to different error processes as-
sumed. To further verify whether this is indeed the case, we conducted a small 
Monte Carlo study. More specifically, we generated a random variable yt using equa-
tion (1) but assuming 2 breaks (i.e., DU1t, DU2t, DT1t and DT2t) with their dates and 
the values of all coefficients being given. The error term et was generated following 
an AR(1) process with the autoregressive coefficient predetermined. When the (cor-
rect) AR(1) specification is used for the error structure, the computed highest PL 
value equals 74.375 which corresponds to the two true breakpoints. However, if the 
(incorrect) AR(0) process was assumed for the error term, we obtain a higher PL 
value of 78.260 associated with 4 breaks instead of 2; that is, we end up with an 
over-inflated number of breakpoints. This suggests that the validity of the PL model 
selection approach is conditional on the correct specification of the error structure, at 
least in this application. Merely accepting the highest PL value among all models 
with different structural changes and varying error processes could therefore result 
in overestimating or underestimating the number of breakpoints and possibly in 
misidentifying their locations. 

The best models we have selected, i.e., the models that have the highest PL values 
and well-behaved residuals εt, yield the following maximum likelihood estimates: 
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57 61 66(85.411) (10.705) ( 3.212) ( 7.629) (2.256)

75 77 57 61(4.294) ( 2.776) ( 3.615) ( 0.807)
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and 

56 61 76(98.06) (4.428) (3.919) ( 9.480) ( 4.653)

90 56 61 76( 5.685) ( 2.852) (2.773) (7.796)

(5.12
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905)
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t
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DT e

e e e ε− −
−

+

= − +

 (6) 

Based on equations (5) and (6), Figures 1 and 2 depict the long-run growth 
paths of China’s GDP and labour productivity. The growth rates of GDP during the 
six break periods can be calculated using the point estimates of the slopes given in 
(5). They are: 15.6% (1952–1956), 6.0% (1957–1960), 6.0% (1961–1965; note that 
the coefficient of DT61 in (5) is insignificant), 9.0% (1966–1974), −2.7% 
(1975–1976), and 11.3% (1977–2000). By the same calculation method and using 
the relevant information provided in equation (6), we obtain the growth rates of la-
bour productivity for the five break periods as follows: 8.6% (1952–1955), 1.1% 
(1956–1960), 4.2% (1961–1975), 6.5% (1976–1989), and 8.6% (1990–2000). 

Figure 1. The Long-Run Growth Path of Logarithmic Output 
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Figure 2. The Long-Run Growth Path of Logarithmic Labour Productivity 

These changes in long-run growth rates can all be related to particular historical 
events, but there are three notably surprising results to point out here. First, the Cul-
tural Revolution (1966–1976) did not have a negative impact on labour productivity 
growth but had a positive growth effect on GDP, contrary to what people normally 
believe. Second, it is since the end of the Cultural Revolution in 1976, and not since 
the inauguration of economic reforms in 1979, that both GDP and labour productiv-
ity have experienced growth takeoff. That is, economic reforms did not impact the 
long-run growth paths of these two series, again a seemingly counter-intuitive result. 
Third, 1990 is the first year of implementing a drastic program of macroeconomic 
austerity and is also the immediately subsequent year of the 1989 political crisis (the 
“June 4th event”). However, how these unfavourable shocks should cause a rise in 
the long-run growth rate of labour productivity is a mystery. Clearly, the currently 
adopted approach is unable to solve these puzzles. 

4. Conclusions 

In this paper, a quasi-Bayesian model selection approach developed by 
Kashwagi (1991) and extended by Bianchi and Kan (1996) is adopted to detect the 
number and timing of structural changes in China’s GDP and labour productivity 
data. We have shown that one cannot mechanically or blindly use the highest value 
of the predictive likelihood information criterion to pick out the best model among 
models with and without well-behaved residuals: the criterion is valid only when the 
white-noise assumption about the error terms is satisfied. In our case, only within 
the class of models with AR(2) error terms can we compare the PL values and use 
validly the highest one to determine the number and dates of breakpoints.  
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The empirical results suggest 5 breakpoints for GDP in 1957, 1961, 1966, 1975, 
and 1977 and 4 breakpoints for labour productivity in 1956, 1961, 1976, and 1990. 
These breakpoints divide the sample into different growth periods. While most of 
the estimated growth results are expected, some changed/unchanged long-run 
growth rates do not seem to agree with common sense. Accordingly, further research 
to adopt other model selection approaches such as the Bayesian one is needed to 
confirm these new findings or check their validity. 
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