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Abstract 
Historical prices information has not been exhaustively exploited in forecasting the 10-

minute-ahead Composite Index of the Malaysian stock market. A simple model 
incorporating intraday seasonality can have lower forecast errors than a random walk. 
Improved accuracy is achieved when time-varying volatility is included in the time-of-day 
seasonal model for both in-sample and out-of-sample forecasts. The updating of parameter 
estimates of these volatility models at each new forecast origin to incorporate the latest 
available information leads to further improvement in forecast performance. 
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1. Introduction 

Stock market trading has broadened investment opportunities to both individual 
and institutional investors. Thus, the ability to accurately forecast stock market 
movements and the nature and behaviour of stock returns continue to be of interest 
to researchers and practitioners. Many early works characterized stock returns as 
random walks; see for example Kendall (1953), Fama (1965a, b), Granger and 
Morgenstern (1963), Godfrey et al. (1964), Sharma and Kennedy (1977), and 
Cooper (1982). The findings of these studies offer evidence that supports the 
efficient market hypothesis for developed stock markets.  

The independence of stock returns implied by a random walk model suggests 
that returns are not easily predictable. With the application of new statistical tools, 
more recent studies posed empirical evidence against the independence of stock 
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returns. Lo and MacKinlay (1987), Poterba and Summers (1988), Fama and French 
(1988), and Frennberg and Hansson (1993) found that stock returns are predictable 
from their mean-reverting behaviour in the long run. Contrary evidence is also found 
for short-run horizons. Most notable is the presence of calendar effects in stock 
returns which are systematically related to the time of day, the day of the week, the 
week of the month, the month of the year, holidays, and so forth suggesting that 
returns are not independent altogether. A comprehensive survey of the studies on 
calendar effects is provided by Sullivan et al. (2001). 

The recent spate of development in autoregressive conditional 
heteroscedasticity (ARCH) modelling following the introduction of the idea by 
Engle (1982) and its subsequent generalization by Bollerslev (1986), together with 
the empirical support for time-varying volatility that spawned a massive literature, 
posed yet another challenge to the stylized random walks. Bollerslev (1987), 
Akgiray (1989), Nelson (1991), Tse and Tung (1992), Franses and van Dijk (1996), 
Walsh and Tsou (1998), and McMillan et al. (2000) are among those who used the 
ARCH approach to model stock market returns. 

The research on the price behaviour of Bursa Malaysia, a developing stock 
market, went through similar developments. The stock price movements are reported 
to exhibit a random walk behaviour by Laurence (1986), Saw and Tan (1989), 
Mansor (1989), and Kok and Goh (1994a). Kok and Goh (1994b) found mean 
reversion for the Malaysian stock market. Significant empirical regularities 
pertaining to the calendar effect include the day-of-the-week effect (Davidson and 
Peker, 1996; Mansor, 1997) and the time-of-day effect (Chang et al., 1994; Lim, 
1996; Goh and Kok, 2001). The returns are shown to display ARCH effects by 
Mansor (1999) and Pan et al. (1999). 

When used for forecasting, a random walk suggests a naive forecast of no 
change. While seasonal factors arising from calendar effects and time-varying 
volatility are growing in importance as alternatives for explaining the behaviour of 
stock prices, it remains unclear whether they contain additional information content 
for forecasting purposes compared to a naive model. Goh and Gui (2000), for 
instance, found that a random walk model is difficult to beat in their assessment of 
the performance of various univariate and multivariate models for forecasting the 
Malaysian stock market sectoral indices. Their models, however, do not take into 
account possible calendar effects and conditional volatility. The results of Huang 
and Stoll (1994) and Anderson et al. (1999) show the relevance of models based on 
intraday seasonality and volatility for improvement of predictive power. This paper 
examines whether models that capture intraday seasonality patterns and time-
varying volatility offer additional information compared to a random walk for 
forecasting the Composite Index of Bursa Malaysia. The aim is to explore if the 
information content of historical prices are fully exhausted and incorporated in stock 
prices to render the stock market efficient. 

The remainder of the paper is structured as follows. Section 2 describes the data 
and models used together with the measures of forecast performance. Section 3 
discusses the results. The findings are summarized in the concluding section. 



Kim-Leng Goh and Kim-Lian Kok 43 

2. Methodology 

The Composite Index of Bursa Malaysia recorded at 10-minute intervals for 
every trading day spanning September 1998 to April 1999 is used for model 
estimations. The start of the sample period is after the announcement of capital 
controls and the fixed exchange rate regime by the government of Malaysia. Goh 
and Kok (2001) observed that the period since the start of the controls is more 
relevant for forecasting recent stock price movements in the exchange. The out-of-
sample period reserved for evaluating the forecast performance of the models 
considered consists of 25 trading days from May 3 to June 4, 1999, and has a total of 
900 observations. 

The intraday 10-minute returns are given by: 

1ln( ) 100t t tr p p −= × ,  

where tp  is the Composite Index recorded at time t  and 1tp −  is the index observed 
10 minutes before. The benchmark model for comparison is the random walk given 
as follows: 

1t t tp p ε−= + , (1) 

where 2~ . . . (0, )t i i d Nε σ , 1, ,t T= K , and T  is the number of observations in the 
sample for estimation. 

Five alternative models are considered. Intraday seasonality is incorporated in 
the mean process of these models. The stock exchange is open for trading from 
Monday to Friday, and the daily trading hours are from 9:00 am to 12:30 pm and 
2:30 pm to 5:00 pm. As there are 36 ten-minute intervals in a trading day, the 
following OLS model that captures the time-of-day effect is employed: 

1 1 2 2 36 36, 1t t t t t tr D D D rα α α θ ε−= + + + + +K , (2) 

where 1itD =  for the i th interval and 0 otherwise, 1,2, ,36i = K . The term 1tr −  is 
included in the equation to allow for a lag dependent structure. Day-of-the-week 
effects are not considered as the intraday seasonality does not differ significantly 
over different days of the week (Goh and Kok, 2001). 

The remaining four models account for time-varying volatility of returns. A 
generalized ARCH or GARCH(1,1) model (Bollerslev, 1986) is used and the 
variance equation is expanded to take into consideration the systematic time-of-day 
pattern in volatility. According to Engle and Ng (1993), the simple first-order 
specification is sufficient for most empirical modelling purposes. Four dummies are 
included in the variance equation following Goh and Kok’s (2001) findings that 
volatility behaves differently at the open and close of the market compared to other 
times of a trading day. The model is as follows: 

1 1 2 2 36 36, 1t t t t t tr D D D r uα α α θ −= + + + + +K  (3) 
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t t tu z h=    
2

0 1 1 2 1 1 1 2 2 35 35, 36 36,t t t t t t th u h D D D Dβ β β φ φ φ φ− −= + + + + + + ,  

where 1 ~ (0, )t t tu h−Ω , ~ . . . (0,1)tz i i d N , and 1t−Ω  is the information set available at 
time 1t − . 

Seasonality in returns can be artificially induced by the variation in equity 
market risks. To control the risk variation effect, the ARCH-in-mean or ARCH-M 
model (Engle et al., 1987) that includes the conditional standard deviation to proxy 
risks in the mean equation specified as follows is used: 

1/ 2
1 1 2 2 36 36, 1 2 1t t t t t t tr D D D h r uα α α θ θ −= + + + + + +K  (4) 

t t tu z h=   
2

0 1 1 2 1 1 1 2 2 35 35, 36 36,t t t t t t th u h D D D Dβ β β φ φ φ φ− −= + + + + + + ,  

Positive and negative shocks in the stock market of the same magnitude can 
have asymmetric impact upon stock price volatility, where downward market 
movements typically induce higher volatilities than upward movements. The 
threshold ARCH (TARCH) model (Glosten et al., 1993) is able to capture this 
feature. The first-order threshold model is as follows: 

1 1 2 2 36 36, 1t t t t t tr D D D r uα α α θ −= + + + + +K  (5) 

t t tu z h=    
2 2

0 1 1 2 1 1 1 1 1 2 2 35 35, 36 36,t t t t t t t t th u h d u D D D Dβ β β γ φ φ φ φ− − − −= + + + + + + + ,  

where 1td =  if 0tu <  and 0td =  otherwise. The impact of positive news is given 
by 1β  while negative news has an impact of 1β γ+ . If γ  is significantly different 
from zero, the impact of good and bad news is asymmetric. 

Another model that allows for asymmetric impact of news is the exponential 
GARCH (EGARCH) model proposed by Nelson (1991). The variance equation is 
modified according to the EGARCH specification as stated below: 

1 1 2 2 36 36, 1t t t t t tr D D D r uα α α θ −= + + + + +K  (6) 

t t tu z h=   

0 1 1 2 1 1 1 1 2 2 35 35, 36 36,ln( ) ln( )t t t t t t t th h v v D D D Dβ β β γ φ φ φ φ− − −= + + + + + + + ,  

where 1/ 2
t t tv u h= . The news impact is asymmetric if γ  is significantly different 

from zero. 
Models (2) to (6) are used to forecast one-period, or 10-minute-ahead returns. 

Both in-sample and out-of-sample forecasts are considered. If the forecast origin is in 
period i , the 10-minutes-ahead return forecast 1îr +  is first obtained for each model. 
Using information available up to period i , the forecast index 1ˆ ip +  is worked out 



Kim-Leng Goh and Kim-Lian Kok 45 

accordingly. This process is repeated for the entire forecast period. For the in-sample 
period, 0,1, , 1i T= −K . For the out-of-sample period, , 1, , 1i T T T s= + + −K , where 
s  is the total number of out-of-sample forecasts. In the case of random walk, 

1ˆ i ip p+ = . By comparing to the actual index, the model that has the lowest average 
forecast error is deemed best. The in-sample and out-of-sample forecast performance 
of all the six models is assessed using the four criteria given below: 

Root mean squared error (RMSE) = 21 ˆ( )i i
i

p p
n

−∑  (7) 

Mean absolute deviation (MAD) = 1 ˆi i
i

p p
n

−∑  (8) 

Mean absolute percent error (MAPE) = 1 ˆ( ) / 100i i i
i

p p p
n

− ×∑  (9) 

Theil inequality coefficient (Theil) = 

2 2 21 1 1?( ) 100i i i i
i i i

p p p p
n n n

⎡ ⎤
− + ×⎢ ⎥

⎣ ⎦
∑ ∑ ∑  (10) 

where n T=  for the in-sample period and n s=  for the out-of-sample period.  
Two out-of-sample forecasting schemes are adopted. First is the fixed scheme 

where parameter estimates of the model under consideration are not updated. The 
same model estimated using T  observations is used to forecast returns for period 

1, 2, ,T T T s+ + +K . Second is the recursive scheme where parameter estimates are 
updated at each new forecast origin to incorporate the latest available information. 
Under this scheme, the model is re-estimated at every forecast origin (period i ) 
using T i+  observations in order to forecast the return for period 1T i+ + .  

The significance of the differences in forecast performance of the six models as 
measured by the criteria in (7) to (10) is examined using the non-parametric 
Friedman test. The statistic for testing the null hypothesis of no differences in the 
forecast performance of the six models is: 

6
2

1

(1 14) 84r i
i

F R
=

= −∑ , (11) 

where iR  is the total of the rank of each criterion for model i . The analysis is 
performed using the different out-of-sample periods as well as the evaluation criteria 
as the block factor. 

The MSE-F test proposed by McCracken (2004) is used to assess if the models 
augmented with seasonality and volatility provide additional forecast information 
than the random walk. The test concerns only out-of-sample forecasts. The test 
statistic is given by: 
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2 2
, ,

2
,

?[ ]
MSE-F

ˆ

rw i a i
i

a i
i

s u u

u

−
=
∑
∑

, (12) 

where 2
,ˆrw iu  and 2

,ˆa iu  are one-period-ahead forecast errors for the random walk and 
the augmented model, respectively. The augmented model here refers to any of the 
models (2) to (6) for which comparison is made against the random walk. The null 
hypothesis is that the random walk has a mean squared error less than or equal to the 
error of the augmented model, and the alternative is that the mean squared error of 
the augmented model is smaller. The asymptotic critical values for this test are 
provided by McCracken (2004). 

3. Results 

The estimated models and diagnostic checks for statistical adequacy of these 
models are given in Table 1. The F-statistics suggest that all the models explain 
movements in returns significantly. The results of the Jarque-Bera test show that the 
residuals are not normally distributed. To obtain consistent estimates, the quasi-
maximum likelihood methods are applied to the models with time-varying volatility 
(see Bollerslev and Wooldridge, 1992). The returns are significantly positive at 
intervals 25 and 26 (30 and 40 minutes, respectively, after the open of the afternoon 
trading session), and the last 10 minutes before the market closes for all the models. 
The significance of the seasonality in the ARCH-M model implies that the seasonal 
pattern found in the mean process is not attributable to the variation in market risks.  

The diagnostic tests indicate serious autocorrelation problem in the residuals 
and squared residuals of the OLS model (model (2)). The rejection of the Lagrange 
multiplier (LM) test for presence of the ARCH effect (Engle, 1982) also suggests 
that the simple OLS model is statistically inadequate. As is evident from the Q-tests, 
the autocorrelation problem is reduced substantially when time-varying volatility is 
incorporated. Since the standardized residuals and squared residuals are not 
autocorrelated, the specifications of models (3) through (6) are acceptable. Further, 
the ARCH-LM test is not significant. The 2

1tu −  and 1th −  terms in the GARCH, 
ARCH-M and TARCH models ((3), (4), and (5), respectively) and the 1ln( )th −  and 

1tv −  terms in the EGARCH specification (model (6)) are all significant, indicating 
presence of time-varying volatility. The risk-return tradeoff in the ARCH-M model 
is not significant for this period of study. Also, the γ  coefficient in the TARCH and 
EGARCH models is not significantly different from zero and hence provides no 
evidence that the impact of news is asymmetric. The dummy variables 1D , 2D , and 

36D  in the variance equation are significant in models (3) through (6), suggesting 
that volatility is high in the first and last 10 minutes of the trading day. The results 
also indicate that the volatility at the open of the market is higher than that at the 
close. 
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Table 1. The Estimated Models for Forecasting 10-Minute-Ahead Composite Index 

Independent Variables OLS 
Model (2) 

GARCH 
Model (3) 

ARCH-M 
Model (4) 

TARCH 
Model (5) 

EGARCH 
Model (6) 

(a) Equation for the mean 
16D  −0.0175 −0.0327* −0.0289 −0.0331* −0.0417** 
20D  −0.0363** −0.0244* −0.0207 −0.0244* −0.0260* 
24D  −0.0102  0.0249  0.0289  0.0249  0.0365* 
25D   0.0575**  0.0372**  0.0408*  0.0374*  0.0433** 
26D   0.0468*  0.0377**  0.0412*  0.0380*  0.0386* 
34D   0.0087 −0.0195 −0.0158 −0.0197 −0.0388* 
36D   0.1295**  0.1589**  0.1644**  0.1586**  0.1523** 
1tr −   0.1402**  0.2528**  0.2539**  0.2521**  0.2299** 

1/ 2
th    −0.0211   

(b) Equation for the variance 
Constant   0.0054**  0.0055**  0.0054** −0.5232** 

2
1tu −

   0.2280**  0.2333**  0.2228**  
1th −    0.6679**  0.6627**  0.6695**  
2

1 1t td u− −      0.0087  
1ln th −       0.9268** 

1tv −       0.3867** 
1tv −      −0.0172 
1D    0.2910**  0.2949**  0.2910**  1.2964** 
2D   −0.1695** −0.1689** −0.1704** −0.9078** 
35D    0.0100  0.0100  0.0101  0.3469 
36D    0.0316*  0.0311*  0.0316*  0.6314** 
      

Diagnostic Testsa 

F-statistic 
(p-value) 0.000 0.036 0.027 0.037 0.000 

Jarque Bera test for 
normality 0.000 0.000 0.000 0.000 0.000 

Q-test (residual) 
−12 lags 
−24 lags 

0.000 
0.000 

0.129 
0.031 

0.135 
0.033 

0.513 
0.065 

0.430 
0.039 

Q-test (residual2) 
−12 lags 
−24 lags 

0.000 
0.000 

0.926 
0.997 

0.918 
0.997 

0.505 
0.888 

0.628 
0.918 

ARCH-LM 
−12 lags 
−24 lags 

0.000 
0.000 

0.933 
0.998 

0.920 
0.997 

0.452 
0.821 

0.581 
0.851 

Notes: ** and * denote significance at 1% and 5% levels respectively. The estimated coefficients of the 
models are reported. Only time-of-day factors that are significant in at least one of the models are 
reported in the mean equation. The significance test is based on the White’s (1980) heteroscedastic-
consistent standard errors for the OLS model and the quasi-maximum likelihood standard errors due to 
Bollerslev and Wooldridge (1992) for the other models. F-statistic is for testing the significance of the 
model. Q-test (residual) and Q-test (residual2) refer to Q-test for significance of autocorrelation in the 
residuals and squared residuals, respectively. The standardized residuals are used for models (3) to (6). 
ARCH-LM refers to the Engle (1982) LM test for presence of ARCH effects. a The p-values are reported 
for all diagnostic tests. 
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The evaluation results of the in-sample forecast performance of these six models 
are shown in Table 2. For each measure, the models are ranked from 1 (lowest average 
forecast error) to 6 (highest average forecast error). The Friedman test indicates that 
the performance ranking is significantly different among the models. The average 
prediction errors are consistently the highest for the random walk, irrespective of the 
measure used. The mean rank is the lowest for EGARCH, followed by TARCH. The 
goodness of fit is therefore the best for the models that allow for asymmetric impact of 
good and bad news and is the worst for the random walk. 

Table 2. Evaluation of In-Sample Forecast Performance 

Measures of Forecast Errors 

Model RMSE MAD MAPE Theil 
Mean Ranka 

RW 1.68851 [6] 1.02850 [6] 0.21682 [6] 0.16602 [6] 6.0 
OLS 1.65653 [1] 1.00354 [5] 0.21164 [5] 0.16288 [1] 3.0 
GARCH 1.66301 [4] 0.99805 [3] 0.21075 [3] 0.16351 [4] 3.5 
ARCHM 1.66335 [5] 0.99928 [4] 0.21099 [4] 0.16354 [5] 4.5 
TARCH 1.66287 [3] 0.99794 [2] 0.21073 [2] 0.16350 [3] 2.5 
EGARCH 1.66077 [2] 0.99749 [1] 0.21062 [1] 0.16329 [2] 1.5 
Notes: Figures in brackets are the ranks of the forecast performance of each model. The rank for the 
model with the lowest average forecast error is 1 and for the model with the highest average forecast error 
is 6. RW, OLS, GARCH, ARCH-M, TARCH, and EGARCH refer to models (1) to (6) as defined in the 
text. See Section 2 for definitions of the measures of forecast errors. a The Friedman test statistic is 14.286 
(p-value = 0.014). 

The market index at 10-minute intervals is forecasted for the 25 trading days in 
the out-of-sample period. In addition, the forecast performances for three sub-
periods, each consisting of 5 trading days, are also analysed. The sub-periods, 
representing different market conditions, are May 3-7 (Period 1), May 20-21 and 24-
26 (Period 2), and May 31 and June 1-4 (Period 3). Table 3 provides descriptive 
statistics for the three sub-periods. All three sub-periods have different mean levels. 
The variation in the third period is lower than that of the first two periods, and price 
movements are within a narrower range. 

Table 3. Descriptive Statistics for the Three Out-of-Sample Forecast Periods 

 
Period 1: 

May 3-7, 1999
Period 2: 

May 20-21 and 24-26, 1999
Period 3: 

May 31 and June 1-4, 1999 

Maximum 731.90 784.23 759.37 
Minimum 670.62 721.98 738.47 
Range   61.28   62.25   20.90 
Mean 703.21 760.68 745.67 
Standard deviation   18.20   15.58     4.99 
Coefficient of variation     2.59     2.05     0.67 
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The out-of-sample performance measures using the fixed forecasting scheme 
are reported in Table 4. For the entire period, the difference between the actual and 
the forecast index is in the range of 1.4 to 2.0 points, or about 0.2%. The average 
forecast errors have about the same magnitude for Periods 1 and 2 but are much 
lower for Period 3. This suggests that the forecast errors are higher for the period 
when the market is more volatile. The models are ranked from 1 to 6 according to 
their forecast performance as before. The random walk has the highest or second 
highest average forecast error in all but two cases. In some instances, even the OLS 
model outperforms the random walk. The mean ranks are computed according to the 
measures of forecast errors and forecast periods (see Table 5). At the 10% 
significance level, the ranks are statistically different for each measure of forecast 
errors. The random walk has the highest average MAD and MAPE and the second 
highest RMSE and Theil inequality coefficient. The OLS model ranked close to the 
random walk, whereas the models capturing time-varying volatility are far superior. 
Generally, either the TARCH or EGARCH models have the lowest mean ranking. 
The evidence supporting difference in ranking of the six models is even stronger by 
the out-of-sample periods. Except for Period 1, the random walk has the worst mean 
ranking. The performance of the OLS model is just as poor. Again, the TARCH and 
EGARCH models are ranked either first or second for the entire period, Period 2, 
and Period 3. 

The results of the MSE-F test in Table 6 show that all the models incorporating 
time-varying volatility, i.e., GARCH, ARCH-M, TARCH, and EGARCH, have 
significantly smaller mean squared errors than the random walk for the entire out-of-
sample forecast period. The random walk also has poorer forecast accuracy than the 
simple OLS model and the four time-varying volatility models in Period 3. The null 
hypothesis of equal forecast accuracy cannot be rejected for the other two periods. 

The findings are generally similar with the use of a recursive forecast scheme 
(see Table 7). The random walk and the OLS model rank lowest in 12 and 4 cases, 
respectively. The TARCH model emerges rank 1 most frequently. The EGARCH 
model, which ranked 4 or 5 in a few cases, does not perform as well as in the fixed 
forecast scheme. The differences in rank are borne out in the results of the Friedman 
test in Table 8. The random walk has the highest MAD and MAPE mean rank and 
second highest for the other two measures. The TARCH model has the best mean 
score across all the four measures. The performance of the EGARCH model is 
superseded by that of the ARCH-M model. The mean rank of the random walk is 
again the poorest in all the periods except Period 1. TARCH has the best 
performance for the entire period, Period 2, and Period 3. Again, the mean rank of 
ARCH-M by forecast periods is better than the mean rank of EGARCH. The results 
of the MSE-F test reported in Table 9 are similar to the findings for the fixed 
forecasting scheme. Except for OLS, all the other models with time-varying 
volatility have significantly lower mean squared errors compared with the random 
walk for the entire forecast period. In Period 3, all the models including OLS 
perform significantly better than the random walk. 
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Table 4. Out-of-Sample Forecasts with Fixed Model Scheme—Measures of Forecast Errors 

Model 
Entire Period: 

May 3 to 
June 4, 1999 

Period 1: 
May 3-7, 1999 

Period 2: 
May 20-21 and 

24-26, 1999 

Period 3: 
May 31 and 

June 1-4, 1999 

       
RMSE       
RW 1.96694 [5] 2.18341 [1] 2.20333 [6] 1.48716 [6] 
OLS 1.96946 [6] 2.22555 [6] 2.20099 [5] 1.44458 [5] 
GARCH 1.95947 [2] 2.21501 [3] 2.18839 [3] 1.41793 [3] 
ARCH-M 1.96000 [4] 2.21493 [2] 2.19083 [4] 1.42161 [4] 
TARCH 1.95946 [1] 2.21575 [4] 2.18756 [1] 1.41713 [1] 
EGARCH 1.95953 [3] 2.21589 [5] 2.18760 [2] 1.41768 [2] 
       
MAD       
RW 1.40841 [6] 1.56556 [6] 1.61622 [5] 1.06811 [6] 
OLS 1.39941 [5] 1.56408 [5] 1.63094 [6] 1.03059 [1] 
GARCH 1.39778 [3] 1.56226 [2] 1.60807 [2] 1.04611 [4] 
ARCH-M 1.39807 [4] 1.56225 [1] 1.61328 [4] 1.04984 [5] 
TARCH 1.39773 [2] 1.56262 [3] 1.60717 [1] 1.04541 [3] 
EGARCH 1.39710 [1] 1.56326 [4] 1.60875 [3] 1.04001 [2] 
       
MAPE       
RW 0.19045 [6] 0.22167 [6] 0.21391 [5] 0.14320 [6] 
OLS 0.18921 [5] 0.22150 [5] 0.21574 [6] 0.13818 [1] 
GARCH 0.18897 [3] 0.22119 [1] 0.21277 [2] 0.14024 [4] 
ARCH-M 0.18900 [4] 0.22120 [2] 0.21346 [4] 0.14074 [5] 
TARCH 0.18896 [2] 0.22124 [3] 0.21266 [1] 0.14014 [3] 
EGARCH 0.18889 [1] 0.22134 [4] 0.21287 [3] 0.13943 [2] 
       
Theil       
RW 0.13269 [5] 0.15520 [1] 0.14479 [6] 0.09971 [6] 
OLS 0.13286 [6] 0.15819 [6] 0.14463 [5] 0.09686 [5] 
GARCH 0.13218 [2] 0.15744 [3] 0.14380 [3] 0.09507 [3] 
ARCH-M 0.13222 [4] 0.15743 [2] 0.14396 [4] 0.09531 [4] 
TARCH 0.13218 [1] 0.15749 [4] 0.14375 [1] 0.09502 [1] 
EGARCH 0.13219 [3] 0.15750 [5] 0.14375 [2] 0.09505 [2] 
Notes: Figures in brackets are the ranks of the forecast performance of each model. The rank for the 
model with the lowest average forecast error is 1, and for the model with the highest average forecast 
error is 6. RW, OLS, GARCH, ARCH-M, TARCH, and EGARCH refer to models (1) to (6) as defined in 
the text. See Section 2 for definitions of the measures of forecast errors. 
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Table 5. Out-of-Sample Forecasts with Fixed Model Scheme—Results of the Friedman Test 

Mean Rank by Measure of Forecast Errors 
Model 

RMSE MAD MAPE Theil 
RW 4.50 5.75 5.75 4.50 
OLS 5.50 4.25 4.25 5.50 
GARCH 2.75 2.75 2.50 2.625 
ARCH-M 3.50 3.50 3.75 3.50 
TARCH 1.75 2.25 2.25 1.875 
EGARCH 3.00 2.50 2.50 3.00 
Friedman test 
statistic (p-value)  10.143 (0.071) 10.000 (0.075) 10.571 (0.061) 9.964 (0.076) 

Mean Rank by Out-of-Sample Period 

Model 
Entire Period: 

May 3 to 
June 4, 1999 

Period 1: 
May 3-7, 1999 

Period 2: 
May 20-21 and 

24-26, 1999 

Period 3: 
May 31 and 

June 1-4, 1999 
RW 5.50 3.50 5.50 6.00 
OLS 5.50 5.50 5.50 3.00 
GARCH 2.375 2.25 2.50 3.50 
ARCH-M 4.00 1.75 4.00 4.50 
TARCH 1.625 3.50 1.00 2.00 
EGARCH 2.00 4.50 2.50 2.00 
Friedman test 
statistic (p-value)  17.590 (0.004) 11.000 (0.051) 18.857 (0.002) 13.714 (0.018) 
Notes: The test statistics are computed using the ranks of the forecast performance of each model reported 
in Table 4. 

Table 6. Out-of-Sample Forecasts with Fixed Model Scheme—Results of the MSE-F Test 

Model 

Entire Period: 
May 3 to 

June 4, 1999 
Period 1: 

May 3-7, 1999 

Period 2: 
May 20-21 and 

24-26, 1999 

Period 3: 
May 31 and 

June 1-4, 1999 
OLS −2.30 −6.75 0.38 10.77* 
GARCH       6.87** −5.10 2.47 18.01** 
ARCH-M     6.38* −5.09 2.06 16.98** 
TARCH       6.88** −5.22 2.60 18.23** 
EGARCH       6.82** −5.24 2.60 18.08** 

Notes: The test statistics are computed for comparing the mean squared forecast error of each model with 
that of the random walk. The asymptotic 5% and 1% critical values are 4.23 and 6.60, respectively, for 
the entire period. The corresponding critical values are 9.18 and 13.79 for periods 1, 2, and 3 (interpolated 
from McCracken, 2004). * and ** denote significance at 5% and 1% levels. 
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Table 7. Out-of-Sample Forecasts with Recursive Model Scheme—Measures of Forecast Errors 

Model 
Entire Period: 

May 3 to 
June 4, 1999 

Period 1: 
May 3-7, 1999 

Period 2: 
May 20-21 and 

24-26, 1999 

Period 3: 
May 31 and 

June 1-4, 1999 

         
RMSE       
RW 1.96694 [6] 2.18341 [1] 2.20333 [6] 1.48716 [6] 
OLS 1.96428 [5] 2.22095 [6] 2.19878 [5] 1.43997 [5] 
GARCH 1.95757 [2] 2.21178 [3] 2.19159 [3] 1.41973 [3] 
ARCH-M 1.95812 [3] 2.21154 [2] 2.19108 [2] 1.41936 [2] 
TARCH 1.95716 [1] 2.21272 [4] 2.18919 [1] 1.41752 [1] 
EGARCH 1.95849 [4] 2.21479 [5] 2.19323 [4] 1.42017 [4] 
       
MAD       
RW 1.40841 [6] 1.56556 [6] 1.61622 [5] 1.06811 [6] 
OLS 1.39583 [4] 1.56216 [4] 1.62244 [6] 1.03036 [1] 
GARCH 1.39512 [2] 1.56112 [2] 1.60651 [3] 1.04402 [5] 
ARCH-M 1.39546 [3] 1.56045 [1] 1.60607 [2] 1.04322 [4] 
TARCH 1.39480 [1] 1.56161 [3] 1.60448 [1] 1.04220 [3] 
EGARCH 1.39606 [5] 1.56533 [5] 1.60899 [4] 1.04054 [2] 
       
MAPE       
RW 0.19045 [6] 0.22167 [6] 0.21391 [5] 0.14320 [6] 
OLS 0.18874 [4] 0.22123 [4] 0.21465 [6] 0.13814 [1] 
GARCH 0.18862 [2] 0.22104 [2] 0.21259 [3] 0.13996 [5] 
ARCH-M 0.18866 [3] 0.22094 [1] 0.21253 [2] 0.13985 [4] 
TARCH 0.18857 [1] 0.22111 [3] 0.21232 [1] 0.13971 [3] 
EGARCH 0.18876 [5] 0.22164 [5] 0.21292 [4] 0.13950 [2] 
       
Theil       
RW 0.13269 [6] 0.15520 [1] 0.14479 [6] 0.09971 [6] 
OLS 0.13251 [5] 0.15786 [6] 0.14448 [5] 0.09655 [5] 
GARCH 0.13205 [2] 0.15721 [3] 0.14401 [3] 0.09519 [3] 
ARCH-M 0.13209 [3] 0.15719 [2] 0.14398 [2] 0.09517 [2] 
TARCH 0.13203 [1] 0.15728 [4] 0.14386 [1] 0.09504 [1] 
EGARCH 0.13212 [4] 0.15742 [5] 0.14412 [4] 0.09522 [4] 

Notes: See footnotes to Table 4. 
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Table 8. Out-of-Sample Forecasts with Recursive Model Scheme—Results of the Friedman Test 
Mean Rank by Measure of Forecast Errors 

Model 
RMSE MAD MAPE Theil 

RW 4.75 5.75 5.75 4.75 
OLS 5.25 3.75 3.75 5.25 
GARCH 2.75 3.00 3.00 2.75 
ARCH-M 2.25 2.50 2.50 2.25 
TARCH 1.75 2.00 2.00 1.75 
EGARCH 4.25 4.00 4.00 4.25 
Friedman test statistic (p-value)  11.857 (0.037) 10.143 (0.071) 10.143 (0.071) 11.857 (0.037) 
     

Mean Rank by Out-of-Sample Period 

Model 
Entire Period:

May 3 to 
June 4, 1999 

Period 1: 
May 3-7, 1999

Period 2: 
May 20-21 and

24-26, 1999 

Period 3: 
May 31 and 

June 1-4, 1999 
RW 6.00 3.50 5.50 6.00 
OLS 4.50 5.00 5.50 3.00 
GARCH 2.00 2.50 3.00 4.00 
ARCH-M 3.00 1.50 2.00 3.00 
TARCH 1.00 3.50 1.00 2.00 
EGARCH 4.50 5.00 4.00 3.00 
Friedman test statistic (p-value)  19.429 (0.002) 10.857 (0.054) 19.429 (0.002) 10.857 (0.054) 
Notes: The test statistics are computed using the ranks of the forecast performance of each model reported 
in Table 7. 

Table 9. Out-of-Sample Forecasts with Recursive Model Scheme—Results of the MSE-F Test 

Model 

Entire Period: 
May 3 to 

June 4, 1999 

Period 1: 
May 3-7, 1999 

Period 2: 
May 20-21 and 

24-26, 1999 

Period 3: 
May 31 and 

June 1-4, 1999 
     
OLS 2.44 −6.03 0.74 11.99* 
GARCH 8.63** −4.59 1.93 17.50** 
ARCH-M 8.12** −4.55 2.02 17.61** 
TARCH 9.01** −4.74 2.33 18.12** 
EGARCH 7.78** −5.06 1.66 17.38** 

Notes: The test statistics are computed for comparing the mean squared forecast error of each model with 
that of the random walk. The asymptotic 5% and 1% critical values are 4.26 and 6.65, respectively, for 
the entire period. The corresponding critical values are 9.18 and 13.80 for periods 1, 2, and 3 (interpolated 
from McCracken, 2004). * and ** denote significance at 5% and 1% levels. 

Another issue that remains to be investigated is if inclusion of the most up-to-
date information helps to improve forecast accuracy. The average forecast errors for 
the fixed and recursive schemes are compared using the Wilcoxon signed ranks test. 
The test is computed for different measures of forecast errors and also different 
forecast periods and the results are stated in Table 10. The recursive scheme 
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performs significantly better for all the forecast measures. The average forecast 
errors of the recursive scheme are also significantly lower for the entire out-of-
sample period and Period 1. The results suggest that the updating of the forecast 
models as new observations become available leads to improved forecast 
performance. 

Table 10. Wilcoxon Signed Ranks Test for Comparison of the Fixed and 
Recursive Forecast Schemes 

 Exact Test Statistic Asymptotic Test Statistic (p-value) 
    
Measure of Forecast Errors 
RMSE 60.0 −1.680 (0.093) 
MAD 15.0** −3.360 (0.001) 
MAPE 16.0** −3.323 (0.001) 
Theil 59.5* −1.699 (0.089) 
    
Out-of-Sample Period 
Entire Period: May 3 to 
June 4, 1999 

0.0** −3.921 (0.000) 

Period 1: May 3-7, 1999 25.0** −2.987 (0.003) 
Period 2: May 20-21 
and 24-26, 1999 

86.0 −0.709 (0.478) 

Period 3: May 31 and 
June 1-4, 1999 

67.0 −1.419 (0.156) 

Notes: The test statistics are computed for testing if the average forecast error of the recursive scheme is 
smaller than that of the fixed scheme. The exact test statistic is based on the rank sum. The null 
hypothesis is rejected if the rank sum is less than 60 and 43 at the 5% and 1% level, respectively. * and ** 
denote significance at 5% and 1% levels. 

We further investigate the usefulness of the forecasts for making trading 
decisions. For expositional purposes, a simple trading rule under the assumption of 
no transaction costs is considered. At each 10-minute interval, the investors make a 
decision to buy at the start of the interval and then sell at the end of the interval if the 
market is predicted to rise in that interval. The actual 10-minute return is then 
computed for every transaction made according to the trading decision based on 
each of the six models. 

For the random walk, independent random draws from a standard normal 
distribution are used to predict the market movements. The sum of the actual returns 
and average return per transaction are reported in Table 11 for the entire out-of-
sample forecast period and also for Periods 1 to 3. The results show that the returns 
generated from the OLS model are higher than the returns of the random walk model. 
Both of these models do not perform as well as the other time-varying volatility 
models with seasonality incorporated. The performance of all the models is better 
for Period 3 when the market is least volatile. Although these results hold the same 
for the fixed and recursive forecast schemes, the returns generated under the 
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recursive scheme are generally higher for the entire out-of-sample period. Inclusion 
of transaction costs will have the same implication for all six models. A clear 
indication of the results is the inferiority of the random walk for making trading 
decisions. 

Table 11. Returns Generated under the Fixed and Recursive Forecast Schemes 

Model RW OLS GARCH ARCH-M TARCH EGARCH 

Fixed Scheme   

   

Sum of returns (%)   

Entire Period −0.34 13.36 20.68 21.06 20.37 19.26 

Period 1 −0.53 1.74 2.90 3.45 2.90 2.42 

Period 2 −1.49 −0.68 1.90 1.39 1.90 2.01 

Period 3 0.41 2.59 3.93 3.45 4.08 3.32 

   

Average return per transaction (%) 
Entire Period −0.0007 0.0274 0.0434 0.0419 0.0430 0.0412 

Period 1 −0.0055 0.0180 0.0293 0.0338 0.0293 0.0246 

Period 2 −0.0159 −0.0075 0.0234 0.0164 0.0234 0.0249 

Period 3 0.0037 0.0264 0.0436 0.0349 0.0458 0.0381 

   

Recursive Scheme   

Sum of returns (%)   

Entire Period −0.34 13.79 22.11 21.49 21.82 20.16 

Period 1 −0.53 2.34 2.90 2.90 2.90 3.11 

Period 2 −1.49 −1.85 1.50 0.87 0.84 0.37 

Period 3 0.41 3.73 3.89 3.89 4.01 3.32 

       
Average return per transaction (%) 
Entire Period −0.0007 0.0289 0.0450 0.0440 0.0450 0.0416 

Period 1 −0.0055 0.0241 0.0293 0.0293 0.0293 0.0314 

Period 2 −0.0159 −0.0206 0.0168 0.0102 0.0098 0.0042 

Period 3 0.0037 0.0405 0.0423 0.0423 0.0441 0.0360 

If a buy-and-hold strategy is followed over the individual period under 
consideration, the return generated at the end of each period is 9.38% for the entire-
out-of-sample period, 2.76% for Period 1, −3.74% for Period 2 and −1.13% for 
Period 3. These figures are lower than the sum of returns generated using the models 
with intraday seasonality and time-varying volatility. The results suggest that these 
models lead to higher total returns than a simple buy-and-hold strategy, in the 
absence of transaction costs. However, transaction costs are practical constraints that 
may prevent the use of the intraday forecast strategy for investors to take advantage 
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of the additional predictive ability of the models. Any additional benefits may easily 
be outstripped by the costs when trading repeatedly at a short interval of 10 minutes. 
Such constraints are also noted by Huang and Stoll (1994) whose study shares 
similar findings. 

4. Conclusion and Discussions 

Ten-minute returns of the Composite Index of the Malaysian stock market are 
found to exhibit a significant time-of-day effect and time-varying volatility. This 
paper shows that even a simple OLS model incorporating only the intraday 
seasonality can out-perform the accuracy of a random walk for obtaining 10-minute-
ahead market index forecasts. The forecast accuracy improves further with the 
incorporation of time-varying volatility in the model. Although the study did not 
find any significant asymmetry in the impact of good and bad news affecting the 
stock market, models that allow for such differential effects on the conditional 
variance exhibit better forecast performance than those that do not. The forecast 
errors can be reduced further if the most up-to-date information is used to estimate 
the model for forecasting. 

In sum, significant information content is found in the intraday seasonality and 
volatility behaviour for forecasting the intraday stock market index. When exploited, 
they provide additional signals to possible future movements of the stock market 
compared to a random walk. As information in historical prices has not been 
exploited exhaustively, the Malaysian stock market is not weak form efficient. 
Although the Composite Index is released minute by minute to the market on a real-
time basis, information is not efficiently incorporated into the prices after a lag of 10 
minutes. Such information can be exploited to earn better returns than by relying 
purely on the random walk model. The premium is even higher if market agents 
update forecasts as new information becomes available. 

Trading rules formulated from the forecasts of models incorporating the time-
of-day component are superior those based on a pure random walk process. 
Although better than the random walk, transaction costs may preclude market agents 
from taking advantage of the predictive power of these models in reality. Further, 
sufficient skills are required for making such forecasts. However, the economic role 
of market microstructure is not irrelevant. Silber (1984) found that trades held open 
by scalpers in futures markets longer than 3 minutes can lead to losses. His study 
highlights the importance of the ability of scalpers to make decisions in extremely 
short time horizons. 

The findings of this study suggest the occurrence of short-run regularities in the 
stock market and that realization of stock prices cannot be the results of chance and 
are thus useful for making predictions. Although the study considers only 
improvements in short-interval forecasts, Andersen et al. (1999) show that high-
frequency intraday returns can be exploited for improving forecasts over longer 
horizons. Rules considered for 10-minute interval trading in this study may be of 
restricted use in practice because the high transaction costs incurred from frequent 
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trading at short time intervals may outweigh the benefits derived from exploiting the 
predictive power. The results, however, are indicative of the relevance and potential 
of the forecasts to make better trading decisions. Future work could explore the high 
frequency intraday regularities to identify forecast returns of longer horizons that 
exceed transaction costs as a trading guide. 

Ederington and Lee (1993) reported that macroeconomic news announcements 
are responsible for most of the observed intraday volatility patterns in interest rate 
and foreign exchange markets. This suggests that information contained in intraday 
regularities can be useful for providing early signals to future stock market 
movements as a result of news. Signals that show the event of a large discrete drop 
can help avoid detrimental effects of a market crash. Future research should consider 
the predictive ability of models with time-of-day seasonality and volatility in 
datasets with large discrete jumps. 

An important aspect not included in the scope of this paper is the prediction of 
volatility, often used as the proxy of trading risk. As improved methods to forecast 
volatility provide further insight on risk management, future research endeavours 
should investigate if the volatility forecast performance of the GARCH-type models 
can be improved with the incorporation of intraday seasonality and up-to-date 
information. 
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