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Abstract 
This paper deals with a multivariate long memory model for the specification of real 

output in the US, the UK, and Canada. We examine the orders of integration of the three 
time series first individually and then allow cross dependence between observations. 
Performing univariate analysis, results show that the three series have orders of integration 
higher than 1, especially Canada. The multivariate model supports this view, finding 
conclusive evidence of non-stationarity for the three series and higher orders of integration 
for Canada than for the UK or the US. With respect to the cross-dependence structure, it 
seems that the US and Canada, and the US with the UK present the highest degrees of 
correlation across countries. 
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1. Introduction 

Long memory models have become in recent years alternative credible ways of 
modeling many macroeconomic time series. Tests for fractional integration have 
been examined by Robinson (1991, 1994), Sowell (1992), Agiakloglou and 
Newbold (1994), and Tanaka (1999) among others, all in a univariate framework. 
With no multivariate tests available for testing the order of integration of the series, 
research interested in multiple time series have been forced to apply univariate tests 
to each element of the multiple time series. This paper uses an extension of the 
univariate tests of Robinson (1994) to the multivariate case, and we examine the 
degrees of integration of real output in the US, the UK, and Canada first in a 
univariate context and then in a multivariate system. In the latter case, we are able to 
capture a much richer dynamic behavior than the univariate work, incorporating the 
potential correlation across the series. Since many time series of interest are likely to 
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be influenced by the same set of events, it is straightforward to consider Lagrange 
Multiplier (LM) tests in a multivariate framework by also modeling the covariation 
of the series. 

Section 2 briefly describes the univariate procedure. Section 3 extends the tests 
to the multivariate case. Section 4 contains the empirical application, while Section 
5 contains concluding comments. 

2. The Univariate Tests of Robinson (1994) 

We define an ( )0I  process },1,0,{ K±=tut  as a covariance stationary process 
with spectral density function that is positive and finite at the zero frequency. In this 
context, we say that },1,0,{ K±=txt  is ( )I d  if: 

(1 )d
t tL x u− =  for 1, 2,t = K , (1) 

0tx =  for 0t ≤ . (2) 

If 0=d  in (1), tt ux = , and we say that tx  is “short memory” as opposed to the 
concept of “long memory” in case of 0>d . The fractional differencing parameter 
d  plays a crucial role from both statistical and economic viewpoints. Thus, for 
example, if )5.0,0(∈d , tx  is covariance stationary, and if )1,5.0[∈d , tx  is no 
longer stationary but is still mean reverting, with the effect that shocks die away in 
the long run. Finally, if 1≥d , the series is non-stationary and non-mean-reverting. 
This result has strong implications in terms of economic policy. Thus, for example, 
if a time series is mean-reverting (i.e., 1<d ), there is less need for policy action 
than in the case of a unit root, since the series will return to its path sometime in the 
future. On the other hand, if the series is ( )1I , strong policy actions will be required 
to bring the variable back to its level since the effect of the shocks will persist 
forever. It thus appears crucial to examine the order of integration of the series in 
order to determine the persistence of the shocks. 

We first describe the univariate tests of Robinson (1994). He considers the 
regression model: 

't t ty z xβ= + , 1, 2,t = K , (3) 

where ty  is the time series we observe, β  is a 1×k  vector of unknown parameters, 
tz  is a 1×k  vector of deterministic regressors, and tx  is given by (1). Robinson 

(1994) proposed an LM test of the null hypothesis: 

0 0:H d d=  (4) 

in (1)–(3) for any real value 0d . The functional form of the test statistic (denoted 
)R̂  is fully described in Robinson (1994). Based on the null hypothesis 0H , he 

established that under certain regularity conditions: 
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2
1

ˆ
dR χ→  as T →∞ . (5) 

This version of the test permits us to test unit roots in the classical sense (e.g., 
Dickey and Fuller, 1979; Phillips and Perron, 1988; Kwiatkowski et al., 1992) in the 
case of 10 =d  in (4). However, unlike these previous procedures, Robinson’s (1994) 
method has several distinguishing features. First, the asymptotic null distribution is 
standard, in the sense that we do not need to rely on critical values obtained via 
Monte Carlo simulations. Also, the tests are efficient in the Pitman sense, and these 
two properties hold independent of the inclusion or exclusion of deterministic 
regressors and of the different ways of modeling the )0(I  disturbances, which is 
another unusual feature in most unit root tests, with the limiting distribution 
changing with features of the regressors. 

3. A Multivariate Fractional Test 

Suppose that 1( , , )t t Nty y y ′= K  is the 1×N  time series vector we observe and 
that it is driven by the following model: 

1
1 1(1 ) 0

0 (1 ) N

d
t t

d
Nt Nt

L y u

L y u

⎛ ⎞− ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠

L

M O M M M

L

, 1, 2,t = K , (6) 

where 1( , , )t t Ntu u u ′= K  is an )0(I  vector process with spectral density matrix 
)(λF  that is positive definite. Thus, it may be a white noise vector process but it 

may also include, for example, a VAR structure. As in Robinson (1994), we could 
also have included an intercept and/or a linear time trend. However, in order to 
simplify the computation of the test statistic, we prefer to work directly with the 
original series, subtracting the sample mean before performing the analysis in the 
empirical application in Section 4. 

Similar to the univariate tests of Robinson (1994), we test the null hypothesis: 

0 1 10 0 0: ( , , ) ( , , )N NH d d d d d d′ ′≡ = ≡K K  (7) 

in (6) for real values 0d . Let us suppose that tu  in (6) is a vector process generated 
by a parametric model of form: 

0
( ; )t t j

j
u A j τ ε

∞

−
=

= ∑ , 1, 2,t = K , (8) 

where tε  is white noise and K  is the unknown variance-covariance matrix of tε . 
The spectral density matrix of tu  in (8) is: 
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*1( ; ) ( ; ) ( ; )
2

f k Kkλ τ λ τ λ τ
π

= , (9) 

where ∑∞

== 0 );();( j
jiejAk λττλ  and *k  means the complex conjugate transpose of 

k . A number of conditions are required on A  and f  when deriving the test 
statistic; their practical implications being that though tu  is capable of exhibiting a 
much stronger degree of autocorrelation than a multiple ARMA process, its spectral 
density matrix must be finite, with eigenvalues bounded and bounded away from 
zero. In Gil-Alana (2003a, b), it is shown that a LM test S%  of 0H  in (6) satisfies:  

2
d NS χ→%  as T →∞ . (10) 

Thus, the limiting distribution is standard, unlike what happens in other 
procedures for testing unit roots in univariate models, based on autoregressive (AR) 
alternatives. In fact, it is the fractional characteristic of the model and its smoothness 
around the unit root case that makes the distribution standard for all real values 0d . 
Results based on Monte Carlo experiments on these multivariate tests were carried 
out in Gil-Alana (2003a), and it was shown that the tests perform relatively well in 
finite samples against fractional-type alternatives. 

4. An Empirical Application 

The time series data analyzed in this section corresponds to annual US, UK, 
and Canadian real output for the time period 1870–1999, obtained from the 
International Monetary Fund database. 

Figure 1 displays the original series along with their corresponding 
correlograms and periodograms. All series have a non-stationary appearance, which 
is corroborated by the correlograms with values decaying very slowly, and also by 
the periodograms with a large peak around the smallest frequency. 

Figure 2 displays similar plots based on the first differenced data. We see that 
the correlograms still present significant values even at some lags relatively away 
from 0 and similarly the periodograms still show peaks at the zero frequency, 
suggesting that a component of long memory is still present in the first differenced 
data. 

We start by performing the univariate tests of Robinson (1994). We compute 
the test statistic Rr ˆˆ = , testing 0H  in model (1) and (3), assuming that the 
disturbances are white noise and weakly autocorrelated. In the latter case, we 
consider AR models and Bloomfield’s (1973) exponential spectral model, denoted 
B( k ) for the k th-order model. This is a non-parametric approach to modeling the 

)0(I  disturbances, which produce autocorrelations decaying exponentially as in the 
AR case. 
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Figure 1. Original Time Series with Corresponding Correlograms and Periodograms 

US UK Canada 

Original Series 

   
Correlograms 

   

Periodograms 

   
Notes: In the correlograms, the large sample standard error under the null hypothesis of no 
autocorrelation is T1  or roughly 0.08. 

Table 1 displays the 95% confidence intervals of those values of 0d  where 0H  
cannot be rejected. We take (1) and (3) with (1, )tz t ′= , 1≥t , and (0,0)′  otherwise. 
Thus, under 0H , the model becomes: 

1 2t ty t xβ β= + + , 1, 2,t = K , (11) 
(1 ) od

t tL x u− = , 1, 2,t = K . (12) 

We examine the cases of white noise, AR( k ), and B( k ), 1,2k = , disturbances. 
First, we concentrate on the case of 021 == ββ  a priori (i.e., we do not consider 
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regressors in the undifferenced model (11)). Then we study the cases of 1β  
unknown and 02 =β  a priori (i.e., with an intercept), and finally both 1β  and 2β  
unknown (i.e., with an intercept and a linear time trend). 

Figure 2. First Differenced Time Series with Corresponding Correlograms and Periodograms 

US UK Canada 

Original Series 

   
Correlograms 

   

Periodograms 

  
 

Notes: In the correlograms, the large sample standard error under the null hypothesis of no 
autocorrelation is T1  or roughly 0.08. 

Starting with the results for the US, we observe that if we do not include 
regressors, the unit root null hypothesis is rejected for all types of disturbances 
except if they are B(2). The values of 0d  where 0H  cannot be rejected range 
between 0.95 (when tu  is B(2)) and 1.60 (when tu  is white noise). Similar results 
are obtained in case of including an intercept and/or a linear time trend, though the 
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unit root is not rejected here if the disturbances are AR(1). Similarly for the UK, if 
tu  is white noise, the unit root is decisively rejected in favor of higher orders of 

integration, the values ranging from 1.19 (with no regressors) to 1.59 (with a linear 
time trend). If the disturbances are autocorrelated, the unit root is also rejected when 

tu  is AR(1), while it is not for the remaining types of disturbances. Finally, the 
results for Canada are definitely less ambiguous, and the unit root is rejected for all 
types of disturbances and all types of regressors. The values of 0d  where 0H  cannot 
be rejected oscillate now from 1.10 (when tu  is AR(1) with a linear trend) to 1.57 
(when tu  is white noise with no regressors). 

Table 1. Confidence Intervals of the Non-Rejection Values of 0d  

 No regressors With an intercept With a time trend 
US    

White noise (1.25, 1.60) (1.25, 1.60) (1.27, 1.61) 
AR(1) (1.01, 1.22) (0.87, 1.20) (0.94, 1.13) 
AR(2) (1.01, 1.27) (1.00, 1.25) (0.96, 1.28) 
B(1) (1.02, 1.25) (1.01, 1.23) (1.01, 1.26) 
B(2) (0.95, 1.18) (0.97, 1.21) (0.98, 1.23) 
UK    

White noise (1.19, 1.41) (1.24, 1.58) (1.27, 1.59) 
AR(1) (0.96, 1.19) (0.95, 1.23) (0.90, 1.17) 
AR(2) (0.98, 1.19) (0.96, 1.24) (0.95, 1.28) 
B(1) (1.07, 1.34) (1.04, 1.27) (1.04, 1.32) 
B(2) (1.01, 1.24) (0.96, 1.26) (0.96, 1.25) 

Canada    
White noise (1.33, 1.57) (1.32, 1.55) (1.34, 1.56) 

AR(1) (1.20, 1.45) (1.15, 1.42) (1.10, 1.39) 
AR(2) (1.19, 1.52) (1.16, 1.47) (1.15, 1.48) 
B(1) (1.20, 1.44) (1.20, 1.43) (1.22, 1.44) 
B(2) (1.20, 1.47) (1.18, 1.46) (1.20, 1.50) 

The results in Table 1 vary substantially depending on how we specify the 
)0(I  disturbances. Because of this, we have also performed a semiparametric 

procedure (Robinson, 1995), which is robust to the different types of disturbances. It 
is a local “Whittle estimate” in the frequency domain, considering a band of 
frequencies that degenerates to zero. Robinson (1995) proved that: 

ˆ( ) (0,1/ 4)o dm d d N− →  as T →∞ ,  

where 0d  is the true value of d  and with the only additional requirement that 
m →∞  slower than T . 
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Figure 3. Estimates of 0d  based on Robinson (1995) and the Unit Root Intervals 
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Figure 3 presents the results based on Robinson (1995) for a range of values of 
m  from 1 to 2T . Because of the non-stationary nature of the series, the analysis is 
based on the first differenced data, then adding 1 to the estimated values to obtain 
the proper values of d . We also display 95% confidence intervals corresponding to 
the unit root case. We see that for the three series, practically all the estimates are 
above the unit root interval. Moreover, for the US and the UK, the values oscillate 
between 1.2 and 1.5, and they are slightly higher for Canada. 
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Next, we perform the multivariate analysis and compute the test statistic 
described in Section 3, testing the null hypothesis (7) in (6), assuming first that tu  is 
white noise. Thus, under this 0H , the model becomes: 

10

20

30

1 1

2 2

3 3

(1 ) 0 0
0 (1 ) 0
0 0 (1 )

d
t t

d
t t

d
t t

y uL
L y u

L y u

⎛ ⎞− ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠

, 1, 2,t = K , (13) 

where 10d , 20d , and 30d  are the orders of integration of the US, the UK, and Canada. 
We calculate the statistic for values 10d , 20d , and 30d  between 0 and 2.5 in 

increments of 0.25. However, instead of reporting the values for all statistics, we 
report in Table 2 only those ( 10d , 20d , 30d ) combinations where 0H  cannot be 
rejected at the 5% level. The first thing we observe is that the null hypothesis of 
three unit roots (i.e., 10 20 30 1d d d= = = ) is rejected, and all non-rejection values are 
for values of 10d , 20d , and 30d  at least 1, implying non-mean-reverting behavior. 
Moreover, we observe that the values of 30d  are nearly always higher than 10d  and 

20d , implying a stronger degree of integration for Canada than for the UK and the 
US in spite of the cross-covariance dependence permitted between the series. 

Table 2. Values of d  where 0H  Cannot Be Rejected at the 5% Level: White Noise Disturbances 

10d  20d  30d  Test Statistic 

1.00 1.50 1.75 4.065 
1.00 1.50 2.00 2.460 
1.00 1.75 1.50 5.609 
1.00 1.75 1.75 1.025 
1.00 1.75 2.00 0.228 
1.00 2.00 1.50 3.986 
1.00 2.00 1.75 0.351 
1.00 2.00 2.00 0.00001 
1.25 1.25 1.50 0.229 
1.25 1.25 1.75 0.278 
1.25 1.25 2.00 0.681 
1.25 1.50 1.50 2.772 
1.25 1.75 1.50 6.083 
1.50 1.00 1.75 3.171 
1.50 1.00 2.00 1.957 
1.50 1.25 1.50 3.654 
1.75 1.00 1.50 3.545 
1.75 1.00 1.75 0.003 
1.75 1.00 2.00 0.361 
2.00 1.00 1.50 1.003 
2.00 1.00 1.75 0.531 
2.00 1.00 2.00 0.286 
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The significance of results in Table 2 might be largely due to failing to account 
for )0(I  autocorrelation in tu . Thus, we fit a VAR(1) structure for the disturbances. 
The results are displayed in Table 3; they are very similar to those in Table 2 but the 
proportion of non-rejection values is a higher in Table 3. In fact, the non-rejection 
values in Table 2 form a proper subset of the non-rejection values in Table 3. They 
range between 1 and 2 for 10d , between 1.25 and 2 for 20d , and between 1.50 and 2 
for 30d . Thus, using the multivariate tests, we obtain conclusions very similar to 
those based on univariate test: we observe higher orders of integration for the UK 
than for the US, and the highest values for Canada, implying a stronger degree of 
dependence between the observations in Canada with respect to the US or the UK. 

Table 3. Values of d  where 0H  Cannot Be Rejected at the 5% Level: VAR(1) Disturbances 

10d  20d  30d  Test Statistic 

1.00 1.50 1.75 2.515 
1.00 1.50 2.00 4.674 
1.00 1.75 1.50 3.732 
1.00 1.75 1.75 2.520 
1.00 1.75 2.00 4.330 
1.00 2.00 1.50 5.297 
1.00 2.00 1.75 3.303 
1.00 2.00 2.00 0.542 
1.25 1.25 1.50 0.543 
1.25 1.25 1.75 4.310 
1.25 1.25 2.00 5.485 
1.25 1.50 1.50 3.437 
1.25 1.75 1.50 1.943 
1.50 1.00 1.75 2.872 
1.50 1.00 2.00 1.073 
1.50 1.25 1.50 1.021 
1.50 1.25 2.00 2.670 
1.50 1.50 1.75 3.203 
1.50 1.50 2.00 2.167 
1.50 1.75 1.75 1.165 
1.50 1.75 2.00 1.493 
1.75 1.00 1.50 1.707 
1.75 1.00 1.75 3.988 
1.75 1.00 2.00 2.078 
2.00 1.00 1.50 2.054 
2.00 1.00 1.75 1.541 
2.00 1.00 2.00 0.309 
2.00 1.25 1.75 0.901 
2.00 1.25 2.00 1.512 
2.00 1.50 1.75 1.703 
2.00 1.50 2.00 1.881 



Luis A. Gil-Alana 145 

Finally, it might also be of interest to examine the cross-correlation across 
countries in those cases where the null hypothesis cannot be rejected. Though the 
values are not reported, it was observed that the highest values in the variance-
covariance matrices were obtained for the cases of the US and Canada and the US 
and the UK, while the lowest values corresponded to the relationship between the 
UK and Canada. All this is consistent with the empirical fact observed in the 
economic activity that the US and Canada and the US and UK are more 
economically related than Canada and the UK. In any case, the fact that the three 
orders of integration are higher than 1 suggests that there is no mean reversion in 
any of the series, with shocks that affect them persisting forever without strong 
policy action to bring them back to their original levels. 

5. Concluding Comments 

In this paper we propose a multivariate long memory model and extend the 
univariate tests of Robinson (1994). We use this method to test the orders of 
integration of real output in the US, the UK, and Canada in a multivariate system. 
However, as a preliminary step, we also performed univariate analyses. Using the 
parametric procedure of Robinson (1994), the results decisively reject the unit root 
null hypothesis for all series, especially for Canada, in favor of higher orders of 
integration. Using a univariate semiparametric method (Robinson, 1995), which is 
robust to the different types of disturbances, the evidence was also strong against the 
existence of unit roots. Thus, the univariate work emphasizes the non-stationary 
nature of the series and the lack of mean-reverting behavior. 

The results based on the multivariate procedure corroborate the univariate 
results, finding conclusive evidence against mean reversion for the three countries. 
Moreover, they stress once more the fact that Canada presents higher orders of 
integration than the other two countries, implying that stronger policy actions must 
be required in this country to bring output to its original long-term projection. 
Finally, looking at the covariance matrices of the differenced series, the results show 
that the US and Canada and the US and UK are more related than Canada and the 
UK, an observation that should be expected in view of the major economic 
relationships between these countries. 

Similar to the univariate tests of Robinson (1994), the multivariate tests 
presented in this paper also permit us to incorporate deterministic components (e.g., 
intercepts, linear trends, or seasonal dummies), with no effect on its standard null 
limit distribution. However, the inclusion of these components did not alter the 
conclusions presented here; we obtain very similar results in favor of non-
stationarity and lack of mean-reverting behavior in the real output of the three 
countries. Finally, the diagonal matrix appearing in (6) can also be extended to the 
non-diagonal case, and, though the functional form of the test statistic is much more 
complicated in this context, it would permit us to study the case of cointegration 
from a different (fractional) time series perspective. Work in this direction is now in 
progress. 
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