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Abstract 
The Pareto distribution is a heavy-tailed distribution often used in actuarial models. It 

is important for modeling losses in insurance claims, especially when we used it to calculate 
the probability of an extreme event. Traditionally, maximum likelihood is used for 
parameter estimation, and we use the estimated parameters to calculate the tail probability 

)Pr( cX >  where c  is a large value. In this paper, we propose a Bayesian method to 
calculate the probability of this event. Markov Chain Monte Carlo techniques are employed 
to calculate the Pareto parameters. 
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1. Introduction 

Losses caused by unexpected events are problems for insurance companies. 
Actuaries want to know more about the distributional behavior of insurance losses 
and to identify the most appropriate probability distribution for large claims. 
Therefore more accurate evaluation of extreme event probabilities is desired. The 
two-parameter exponential distribution and the two-parameter Pareto distribution are 
often considered to be reasonable candidates by actuarial professionals. The 
probability density function of the two-parameter exponential distribution is: 
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The probability density function of the two-parameter Pareto distribution is: 
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Here , 0α θ >  and γ  is known as the threshold parameter in both distributions. 
In the next section, we describe an example from the literature on calculating 

right-tail probabilities associated with large losses. With this example, we illustrate 
the problem involved in standard approaches. In Section 2, we discuss the Bayesian 
approach in general, and in Section 3 the Markov Chain Monte Carlo (MCMC) 
estimation method is described along with its requirements. In Section 4 we apply 
the proposed MCMC method to the example and discuss applications to the 
conditional mean of large losses. Section 5 concludes. 

1.1 An Example 

Table 1 duplicates data in Chapter 3 of Hogg and Klugman (1984). These data 
are the amounts of 40 losses due to wind-related catastrophes in the US in 1977 
recorded to the nearest US $1,000,000. 

Table 1. Forty Losses Due to Wind-Related Catastrophes (Hogg and Klugman, 1984) 

2 2 2 2 2 2 2 2 2 2 

2 2 3 3 3 3 4 4 4 5 

5 5 5 6 6 6 6 8 8 9 

15 17 22 23 24 24 25 27 32 43 

Hogg and Klugman (1984) wished to estimate the probability that a loss will exceed 
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US $29,500,000. This is equivalent to calculating )5.29Pr( >X  if the loss random 
variable X  follows a certain probability distribution, while the empirical 
probability for this is 05.0402 = . They used the two-parameter exponential 
distribution and the two-parameter Pareto distribution as loss distribution models. 
Frequentist methods—maximum likelihood (ML) estimation and the method of 
moments (MM)—were used to estimate the model parameters. Their estimates for 

)5.29Pr( >X  were 027.0ˆ1 =p  under the exponential distribution model and 
040.0ˆ 2 =p  under the Pareto distribution model. 

One interesting point about their methods is the estimation of the threshold 
parameter γ . They estimate γ  to be 1.5, but the ML estimate for γ  for both 
distributions is (1) 1min{ , , }nY X X= K  (see Johnson and Kotz, 1970), which is 2.0. 
Using this estimate and ML to estimate the second parameter in both distributions, 
estimates of )5.29Pr( >X  are 022.0ˆ1 =p  under the exponential distribution 
model and 072.0ˆ 2 =p  under the Pareto distribution model. 

In addition, Hogg and Klugman (1984) produced another ML estimate, 
036.0ˆ3 =p , obtained by solving a system of nonlinear equations using the 

Newton-Raphson method (again using the estimate of γ  as 1.5). In this way, they 
derived a 95% confidence interval estimate for )5.29Pr( >X  based on asymptotic 
normality of ML estimators: )084.0,012.0(048.0036.0 −=± . 

We see that different methods of estimation and distributional assumptions can 
produce different results. It is natural to ask which estimate is best. 

2. A Bayesian Approach 

The various methods of estimation considered in the example are based on the 
frequentist approach. This approach has several drawbacks. It is not difficult to 
obtain a point estimate for the unknown parameter, but it is rather difficult to 
construct an interval estimate. One often resorts to asymptotic normality and 
assumes that the sample size n  is large enough, but estimation performance in 
small samples may be poor. Thus it is important to know how large n  has to be in 
order to achieve a reasonable interval estimate. The approximate 95% confidence 
interval for )5.29Pr( >X  was noted above to be ( 0.012, 0.084)− . Strictly 
speaking, probabilities less than zero are nonsensical, and the interval estimate 
remains unsatisfactory even if we truncate this interval to be (0.0, 0.084) . 

We now propose a Bayesian approach to solve this problem. The Bayesian 
paradigm makes use of data that have already been observed to form probability 
models and to make inferences. Probability densities of model parameters based on 
prior observations are used to inform the probability model and to estimate the 
predictive density of future events. A key characteristic of Bayesian methods is the 
use of probability to quantify uncertainty in inferences. 

From a Bayesian point of view, there is no distinction between observables and 
parameters in a statistical model. That is, both data and parameters are considered 
random quantities. The process of Bayesian modeling can be summarized into the 
following four steps. 
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1. Build an appropriate probability model given the observed data using an 
appropriate joint probability distribution for observable and unobservable quantities 
in a problem. The model should be realistic in relation to the underlying scientific 
problem and to the data collected. 

2. Form the posterior distribution. Let X  denote the observed data, β  the 
model parameters, and ),( βXP  the joint distribution of X  and β . Then: 

( , ) ( ) ( | )P X P P Xβ β β= , (3) 

where )(βP  is referred to as the prior distribution and ( | )P X β  is the likelihood 
function. More abstractly, this can be expressed as: 

Joint probability model  Prior distribution Likelihood function= × .  

By Bayes’ theorem, 

( ) ( | )
( | )

( ) ( | ) 

P P X
P X

P P X d

β β
β

β β β
=
∫

. (4) 

This is called the posterior distribution of β  and is the object of Bayesian 
inference. 

3. Evaluate the final model. It is natural to ask the following questions after a 
final model is obtained: Does the final model fit the data? What are the implications 
of the resulting posterior distribution? Are the conclusions reasonable? To answer 
these questions, one needs to check the final model carefully. If necessary, one can 
return to Step 1 to alter or expand the model. 

4. Conduct inference. Once the probability model is accepted, one can draw 
inferences about the model parameters and make predictions about the probabilities 
of future events. Often the first step is to construct (1 )α− 100% probability, or 
credible, intervals for unknown quantities of interest. Such an interval can be 
regarded as having probability 1 α−  of containing the unknown quantity; in 
contrast, a frequentist confidence interval may strictly be interpreted only in relation 
to a sequence of similar inferences that might be made in repeated practice. 
Increasing emphasis has been placed on interval estimation rather than hypothesis 
testing in areas of applied statistics (Chen et al., 2000). This provides a strong 
impetus to the Bayesian viewpoint. Turning to prediction, let y  denote the 
observed data and y~  the unknown but potentially observable quantities. Predictive 
inference is based on summarizing the posterior predictive distribution )~( yyP . 

3. Markov Chain Monte Carlo Techniques 

The method of Markov Chain Monte Carlo (MCMC) is essentially a Monte 
Carlo integration method using Markov chains. In Bayesian statistics, one often 
faces the problem of integrating over possibly high-dimensional probability 
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distributions to make inferences about model parameters. Monte Carlo integration 
draws samples from the required distribution and forms sample averages to 
approximate expectations. The MCMC approach draws these samples by running a 
cleverly constructed Markov chain for a long time. There are many ways of 
constructing these chains, but all of them, including the Gibbs sampler (Geman and 
Geman, 1984) reviewed here, may be thought of as special cases of the general 
framework of Metropolis et al. (1953) and Hastings (1970). Many MCMC 
algorithms are hybrids of the general Metropolis-Hastings algorithm. 

3.1 The Gibbs Sampler 

Many statistical applications of MCMC use the Gibbs sampler, which is easy to 
implement. The Gibbs sampling algorithm is best described as follows. 

1. Let 1( , , )kX X X= K  be a collection of random variables. Given arbitrary 
initial values )0()0(

1 ,, kXX K , we draw )1(
1X  from the conditional posterior 

distribution (0) (0)
1 2( | , , )kf X X XK , then )1(

2X  from (1) (0) (0)
2 1 3( | , , , )kf X X X XK , 

and so on, until )1(
kX , which comes from (1) (1)

1 1( | , , )k kf X X X −K . 
2. This scheme determines a Markov chain, with equilibrium distribution 

( )f X . After t  iterations we arrive at ( ) ( ) ( )
1( , , )t t t

kX X X= K . Thus, for t  large 
enough, )(tX  can be viewed as a simulated observation from ( )f X . 

Provided we allow a suitable burn-in time, the sequence ( ) ( 1), ,t tX X + K  can be 
thought of as a dependent sample from ( )f X . 

Similarly, suppose we wish to estimate the marginal distribution of a variable 
Y  which is a function 1( , , )kg X XK  of X . Evaluating g  at each )(tX  
provides a sample of Y . Marginal moments or tail areas are estimated by the 
corresponding sample quantities. 

3.1.1 Adaptive Rejection Sampling 

To sample a value from the conditional marginal posterior distribution requires 
further considerations in Gibbs sampling. The ordinary acceptance-rejection method 
(Devroye, 1986) can be inefficient if the target distribution is complicated. However, 
Gilks and Wild (1992) developed a more efficient algorithm called adaptive 
rejection sampling (ARS) that enables one to sample directly from the target 
distribution as long as the distribution is log-concave. We can show that the 
conditional marginal posterior distributions of the parameters of Pareto distribution 
are log-concave if a uniform prior distribution is adopted. That is, we can show that 

0ln 22 <∂∂ αL  and 0ln 22 <∂∂ γL . 

4. Empirical Results Using the MCMC Method 

In this section, we apply the MCMC method to estimate )5.29Pr( >X  using 
the data in Example 1.1. Only the Pareto distribution will be considered since it has 
a thicker tail than the exponential distribution (Klugman et al., 2004), and it will 
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give us a more conservative estimate for this probability as far as the risk on large 
insurance claims is concerned. 

Our results for 1p̂ , estimated using the Gibbs sampler, are presented in Table 2. 
We discarded the first 1,000 values as burn-in and generated 11,000n =  iterations. 
In the generation process, we first generated )(tα  given )1( −tγ  and then generated 

)(tγ  based on the newly generated )(tα . Then we evaluated: 

1 29.5
ˆ ( ) p f x dx

∞
= ∫ .  

The empirical posterior distribution of 1p̂  is illustrated in Figure 1. 

Table 2. Descriptive Statistics of the Empirical Distribution of )5.29Pr( >X  

Variable Mean Mode Median SD Min. Max. 95% Prob. Interval 

( )Pr 29.5X >  0.1529 0.1502 0.1484 0.0454 0.0406 0.4143 (0.0761, 0.2532) 

Figure 1. Empirical Posterior Distribution of )5.29Pr( >X  (n=10,000) 

In this way, we have obtained all salient information about the sampling 
distribution properties of 1p̂ , which is contained in the empirical posterior 
distribution. This cannot be done in the frequentist approach. As we can see from the 
empirical posterior distribution of 1p̂  in Figure 1, the distribution is fairly 
symmetric around the sample mean. Therefore, we take the sample mean 0.153 as 
our final point estimate of )5.29Pr( >X . The Bayesian interval estimate is the 
probability interval (0.0761, 0.2532). The lower and upper bounds are obtained by 
taking the 250th and 9750th ordered values of the 10,000 ranked sample values, 
respectively. 

We can also obtain other useful information from the Gibbs sampler scheme, 
such as the empirical distributions of )5.29( >XXE  and the quantiles 05.0P  and 

01.0P . These are also important summary statistics for decision makers in the 
insurance industry. We present these descriptive statistics in Table 3 and the 
empirical distributions in Figures 2, 3, and 4. 
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Figure 2. Histogram of )5.29( >XxE  (n=10,000) 

Figure 3. Histogram of )05.0_(P  

Figure 4. Histogram of )01.0_(P  
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Table 3. Descriptive Statistics of )5.29( >XXE  and Quantiles 05.0P  and 01.0P  

Variable Mean Mode Median SD Min Max 95% Prob. Interval 
)5.29( >XXE  82.5 50.5 64.7 58.6 29.5 496.7 (32.1, 257.9) 

05.0P  73.0 55.5 54.7 69.7 20.1 597.9 (24.1, 221.6) 

01.0P  1833.3 552.5 1306.9 1508.4 177.6 6842.9 (276.1, 5935.5) 

For the three empirical distributions, we use the modes in each case as the most 
representative value for those variables as the distributions are quite skewed. 
Therefore the most probable value of )5.29( >XXE  is 50.5. Corresponding 
values for 05.0P  and 01.0P  are 55.5 and 552.5. 

One can also compare the MCMC results with those obtained by using the 
bootstrap method (Efron, 1979). These are shown in Table 4. 

Table 4. Results Using the Bootstrap Method 

Variable Mean Mode Median SD Min Max 95% Prob. Interval 
)5.29( >XXE  81.9 49.8 63.2 59.3 29.5 500.3 (31.2, 255.8) 

05.0P  72.5 53.9 55.8 71.1 19.5 600.2 (22.9, 219.8) 

01.0P  1798.2 549.7 1311.3 1499.3 174.8 6901.3 (273.2, 5960.5) 

We find that the bootstrap results are similar to the MCMC results. 

4.1 Comments 

We see from Table 2 that our estimate of )5.29Pr( >X  is much higher than 
the ML estimates. Though care must be taken with respect to the thick-tail 
probability estimate, the more conservative estimate will ordinarily be preferred for 
safety’s sake. This can help to ameliorate the risks of sudden and extremely large 
claims. Other protective measures can also be used, such as raising deductible 
thresholds or reinsurance. 

It is also worth noting that the Bayesian approach using the Gibbs sampler 
immediately provides other important univariate statistics, such as those given in 
Tables 3 and 4. These descriptive statistics cannot be easily obtained with ML 
estimation. 

4.2 Another Example in Finance 

In addition to insurance companies, other financial institutions, such as banks 
and investment companies, are also concerned with risk exposures. Estimating 
value-at-risk (VAR) and conditional excess are increasingly popular methods for 
quantifying the likely losses in their portfolios. VAR and conditional excess 
estimation in the context of portfolio analysis are simply quantile and conditional 
expectation estimation of the loss distribution, with statistics identical to those 
presented in Tables 3 and 4. The only difference is that instead of estimating 
quantiles and conditional excess in the right-hand tail of the insurance claims 
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distribution, we are interested in these statistics in the left-hand tail of the stock price 
distribution. For VAR, we estimate the quantile such that a stock price will fall 
below this level with a fixed probability. For conditional excess, we estimate the 
expected stock price conditional on its having already fallen to a certain level; see 
Figures 5 and 6. 

Figure 5. VAR for a Stock Price 

Figure 6. Conditional Excess for a Stock Price 

Suppose an investment fund holds a portfolio of stocks listed in the Hong Kong 
Stock Exchange. For ease of illustration, suppose the portfolio consists of a single 
stock in the Hang Seng Bank. We obtain a sample of 100 consecutive trading days 
for this stock from August 22, 2001, to January 2, 2002, for analysis. 

We note that the Pareto distribution is not appropriate for this data due to its 
threshold parameter. As with stock prices in general, there is always a chance, 
however small, that the price will fall to zero. We therefore assume that the stock 
price follows a two-parameter Weibull distribution, which is non-negative 
distribution with fat tails. Figure 7 illustrates a probability plot for this data, 
supporting our choice of this probability distribution. A time series plot of the 
sampled data is given in Figure 8. 
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Figure 7. Weibull Probability Plot 

Figure 8. Time Series Plot of the Data 

We can show that the conditional marginal posterior distributions of the 
parameters of Weibull distribution are log-concave if a uniform prior distribution is 
being used (see Pang, 2004). Thus we can use ARS in the Gibbs sampling scheme. 
Results of our MCMC approach are presented in Table 5. The conditional excess 

)0.80( <XXE  is the conditional expected value given that the stock price falls 
below 80.0 Hong Kong dollars. VAR at 05.0P  ( 01.0P ) is the quantile such that the 
stock price will fill below this level with probability 0.05. 

Table 5. Results of VAR and Conditional Excess Using the MCMC Method 

Variable Mean Mode Median SD Min Max 95% Prob. Interval 
)0.80( <XXE 19.165 19.102 19.048 2.793 10.943 48.579 (13.8775, 24.8749) 

05.0P  74.633 74.65 74.696 0.978 58.614 77.221 (72.7718, 76.3172) 

01.0P  69.649 69.68 69.739 1.379 39.671 72.934 (67.2578, 71.9029) 
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5. Conclusion 

This paper reviews the Bayesian approach using Markov Chain Monte Carlo 
(MCMC) estimation and demonstrates its potential advantages for actuarial and risk 
evaluations. Premiums and other monetary valuations have traditionally been based 
on means of probability distributions with little attention given to interval estimates. 
Such interval estimates are difficult to obtain with standard estimation methods such 
as maximum likelihood but are quite feasible with the MCMC approach. 

Using data discussed in the insurance literature, this approach is illustrated by 
estimating univariate statistics for a tail probability of interest and an associated 
conditional mean for large loss values. However, the technique is quite general and 
can be applied to obtain interval estimates of any function, including financial 
statistics, of underlying loss random variables. 

Common practice is to prefer conservative estimates for risk values and 
financial certainty equivalents as a kind of safety margin. The distorted probability 
approach (Landsman and Sherris 2001; Wang 1995, 1996, 1998; Wang et al., 1997) 
provides one such approach. The MCMC approach described here is seen to provide 
more conservative estimates for the Pareto distribution tail probability considered in 
Hogg and Klugman (1984). Importantly, the MCMC approach and interval 
estimation enable more precise control over the degree of conservatism desired. 
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