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Abstract 
To investigate the importance of asymmetric dependence structures for portfolio 

value-at-risk (VaR) and conditional VaR (CVaR) calculations, we introduce bivariate 
copula functions with two GJR-GARCH models as marginals. The results show that the 
copula models and the competing dynamic conditional correlation (DCC) model are valid 
for almost all two-asset portfolios with different weights. However, among models 
validated with standard procedures, copula models with asymmetric dependence structures 
can save capital charges for market risks and reduce potential loss compared with those 
with symmetric dependence structures and with the competing DCC model, implying that 
asymmetric dependence structures are of great importance in improving VaR and CVaR 
calculations not only from a statistical but also an economic perspective. 
Key words: value-at-risk; asymmetry; dependence structure; copula; multivariate GARCH 

model 
JEL classification: C22; G32 

1. Introduction 

Value-at-risk (VaR), the maximum expected loss in market value of a position 
or a portfolio of assets over a given time horizon with a small probability, has been 
widely applied in risk management. When actual losses exceed VaRs calculated by a 
given model, VaRs cannot provide an improved measure of potential risk. Another 
risk measure, conditional VaR (CVaR), the expected value of actual losses 
exceeding VaRs, becomes important in this context. Most conventional literature 
measures portfolio VaR via a simplification using an analytical method (also known 
as the variance-covariance method) that assumes multivariate normality (e.g., Billio 
and Pelizzon, 2000; Palaro and Hotta, 2006). However, fat-tailedness and/or an 
asymmetric dependence structure (i.e., co-movement patterns), which have been 
observed in joint distributions of financial asset returns, make the analytical method 
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impractical. Although the use of t-distributed errors and the GARCH model can 
mitigate the effects of fat-tailedness, the problem of an asymmetric dependence 
structure remains. Giot and Laurent (2003) argued for using an asymmetric 
distribution assumption to improve VaR measurements. 

To incorporate a general class of dependence structures, this paper introduces 
the copula approach proposed by Sklar (1959) into VaR estimation. The copula 
approach is one of the most important developments in modeling dependence 
structures in multivariate distributions and has become popular in the statistical 
literature (e.g., Genest and Rivest, 1993; Nelsen, 1999). Mendes (2005), Hu (2006), 
Patton (2006), and Lai et al. (2009) applied the copula method to empirical studies 
in stock markets, exchange rates, and hedging strategies of stock spot and futures. 
This approach states that any k-dimensional joint distribution function may be 
decomposed into k  marginal distributions and a copula function that completely 
describes the dependence among the k  variables. Since the marginals and the joint 
distribution constructed via a copula do not necessarily belong to the same family, 
this approach introduces flexibility in modeling joint distributions beyond the typical 
multivariate normal or multivariate t distributions. In addition, using the inference 
for the margins estimation method proposed by Joe and Xu (1996), the parameters 
of the marginal distributions and the copula function can be estimated separately, 
and thus estimation becomes easy. 

Given the feasibility of incorporating an asymmetric dependence structure in a 
VaR model, it is still important to ask whether a model with an asymmetric 
dependence structure outperforms one with a symmetric dependence structure. 
According to prevailing statistical wisdom, model performance may be assessed 
using the so-called backtesting procedure suggested by The Basel Committee (1996). 
This procedure specifies that a VaR model performs well when there are a 
probabilistically reasonable number of exceptions (i.e., actual losses exceed VaRs). 
However, if many models perform well based on the backtesting procedure with 
similar statistical accuracy, it is unclear how further model selection should proceed, 
a real problem for practitioners. Banks, financial institutions, and non-financial 
corporations in practice can choose an overall risk level they are willing and able to 
take according to VaRs and then authorize the risk limits to the subsidiaries or 
departments to pursue the greatest risk-adjusted returns. Moreover, financial 
institutions have been required by regulators to set the capital requirement for 
market risk of the holding portfolio suggested by a valid internal VaR model, which 
is has come to be known as the internal models approach since the 1996 Amendment 
of the Basel Accord (1996). Among all valid models, a conservative VaR model 
which has fewer exceptions (i.e., actual losses that exceed the VaRs) and larger 
absolute values of VaRs could result in inefficiency in using capital and thereby 
raise opportunity costs. In contrast, an active VaR model may reduce capital 
requirements bearing no interest such that the corporation may invest more capital in 
profitable projects. For example, if a bank with USD 50 million capital requirements 
per year could save 6% capital charges and invest it at a 5% rate of return, it may 
make USD 50 × 0.06 × 1.05 = 3.15 million extra profits. An active VaR model of 
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course may also cause greater losses and exposures than does a conservative one. 
But if both the conservative and active VaR models are probabilistically acceptable 
and the goal of the corporation is to take risk in order to increase the equity value of 
shareholders, the corporation has an incentive to undertake a riskier project (Galai 
and Masulis, 1976) such as the active VaR model. From this viewpoint and 
economic intuition, a good VaR model could be said to pass the backtesting 
procedure and have less capital charges and lower potential losses. Accordingly, this 
study evaluates valid VaR model performance via capital saving (the percentage 
difference of VaR) and potential loss reduction (the percentage difference of CVaR). 

This paper applies the GJR-GARCH model (Glosten et al., 1993) with seven 
copula functions (copula-GJR-GARCH) to calculate VaRs and CVaRs of two-asset 
portfolios constructed from three major stock indices. Both long and short trading 
positions are considered. Five of the copula-GJR-GARCH models have the same 
acceptability as the dynamic conditional correlation (DCC) model of Engle (2002) 
in long positions and two in both long and short positions. Moreover, based on two 
criteria of relative performance defined by capital saving and expected loss 
reduction, four of the copula-GJR-GARCH models with asymmetric dependence 
structures outperform the symmetric DCC and the symmetric Gaussian copula 
model. 

The remainder of the paper is organized as follows. Section 2 discusses the 
methodology for the VaR and the validation criteria. Section 3 provides the data 
description, presents the empirical results, and evaluates performance across the 
different models. Section 4 concludes. 

2. VaR Computation: Copula Simulation Methodology 

2.1 Copula Function 

A copula function is a joint distribution function of a vector of uniform random 
variables. According to Sklar’s theorem, since any vector of random variables can 
be mapped into a vector of uniform random variables by the corresponding 
distribution functions, the joint distribution can be represented in terms of a copula 
function. Therefore, any joint distribution function F  of k  return series 

tkt RR ,,1 ,,K  can be decomposed into k  marginal distributions kFF ,...,1  and a 
copula function C  that completely describes the dependence structure among the 
k  return series: 

( ) ( )cktkktcktkt RFRFCRRF θθθθθθ );;(),...,;(,,...,;,..., ,1,111,,1 = , (1) 

where kθθ ,...,1  are parameter sets for marginal distributions kFF ,...,1  respectively 
and cθ  is the parameter set for the copula function. 

Assuming all cumulative distribution functions are differentiable, the bivariate 
joint density is given by: 
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where ttcttctt uuuuCuuc ,2,1,2,1,2,1 );,();,( ∂∂∂= θθ  is the copula density function and 
);( 1,11,1 θtt RFu =  and );( 2,22,2 θtt RFu = . Thus, the bivariate density function of 

tR ,1  and tR ,2  can be written as the product of the copula density and the two 
marginal densities );( 1,11 θtRf  and );( 2,22 θtRf . The log-likelihood function is then: 
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To simplify notation, we represent (3) as: 

∑
=

+=Θ
2

1

)()()(
k

kkcc LLL θθ , (4) 

where },,{ 21 cθθθ=Θ  and )(⋅cL  and )(⋅kL  are the log-likelihood functions of 
the copula and tkR , . 

It is sometimes difficult to achieve optimization when the number of model 
parameters of the bivariate density is large. Joe and Xu (1996) proposed a two-step 
estimation called inference for the margins (IFM) to overcome estimation challenges. 
By this method, one can estimate the marginal densities and the copula density 
separately. We follow this approach in this paper. 

In the first step of the IFM method, the parameters of the marginal distributions 
are estimated via maximum likelihood as: 

∑
=

=
T

t
tRf

1
1,111 );(logmaxargˆ θθ , (5) 

∑
=

=
T

t
tRf

1
2,222 );(logmaxargˆ θθ . (6) 

In the second step, the marginal CDFs with the first-step estimates are applied to 
tR ,1  and tR ,2  to provide estimates of the probabilities tu ,1  and tu ,2 , which are 

then used to estimate the copula parameters via: 

∑
=

=
T

t
cttc uuc

1
,2,1 );ˆ,ˆ(logmaxargˆ θθ . (7) 

Joe (1997) shows the efficiency of the easily implemented IFM method 
compared with the usual ML method. The software package RATS of Estima® and 
the BHHH numerical optimization algorithm are used to obtain estimates and 
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standard errors. No restriction is imposed during estimation. 

2.2 Marginal Distributions in a GJR-GARCH Framework 

There are two key components in the bivariate copula representation: two 
marginal distributions of asset returns and one copula function. To capture the 
pattern of fat tails and the asymmetric response of past news on asset returns, we 
specify the marginal densities for asset returns as the widely used GJR-GARCH 
framework (Engle and Ng, 1993; Kim and Kon, 1994; Fornari and Mele, 1995) with 
t-distributed errors defined by: 

tttt RaRaaR ,11,221,110,1 ε+++= −− ,  

1,131,1
2

1,12
2

1,110,1 )0( −−−− +<++= ttttt hIh αεεαεαα ,  

ttt h ,1,1,1 εη = , )(~| 11,1 vttt −Ωη ,  

and 

tttt RbRbbR ,21,221,110,2 ε+++= −− ,  

1,231,2
2

1,22
2

1,210,2 )0( −−−− +<++= ttttt hIh βεεβεββ ,  

ttt h ,2,2,2 εη = , )(~| 21,2 vttt −Ωη ,  

where t,1ε  and t,2ε  are error terms, th ,1  and th ,2  are the conditional variances 
for asset returns, )(⋅I  is the indicator function taking the value 1 when there is a 
negative shock at time 1−t  and 0 otherwise, t,1η  and t,2η  are standardized 
residuals following t distributions with degrees of freedom 1v  and 2v , and 1−Ωt  is 
the past information set. Since both marginal models must condition on the same 
information set up to 1−t , we include both lagged return series in each mean 
equation. The conditional variance processes th ,1  and th ,2  are allowed to have 
asymmetric responses to negative or positive previous random shocks. 

For the competing DCC model, the two-step estimation method is also 
employed such that we can forecast the covariance matrix for VaR calculations. 
However, the two-step estimation of DCC model assumes normality, while our 
marginal models in the first step are t distributions. Therefore, we use the CDF of 
the t distribution with estimated degrees of freedom ( 1̂v  and 2v̂ ) to transform the 
original standardized residuals ( t,1̂η  and t,2η̂ ) into cumulative probabilities and 
then map these probabilities using the inverse normal CDF function into standard 
normal variables n

t,1η̂  and n
t,2η̂ . The resulting series ( n

t,1η̂  and n
t,2η̂ ) will be standard 

normal if the model fits the data and used to estimate the parameters 1θ  and 2θ  in 
the second step of estimating the DCC model: 

1211121 )1( −−− ++−−= t
T
ttt QξξQ θθθθρ , (8) 

where tQ  is the covariance matrix of the first-step standardized residuals, ρ  is 
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the unconditional correlation coefficient, and tξ  is the vector containing n
t,1η̂  and 

n
t,2η̂ . 

2.3 Bivariate Copula Density 

The first-step marginal GJR-GARCH parameter estimates provide estimated 
values of )|ˆ(ˆ 1,11,1 −Ω= ttt Fu η  and )|ˆ(ˆ

1,22,2 −Ω= ttt Fu η . These values are then used in 
the second-step estimation of the copula function, describing the dependence 
structure between tR ,1  and tR ,2 . 

Since the copula function dominates the dependence structure, the selection of 
a copula density function for estimation should depend on the characteristics of 
dependence observed in the data set. To give a comprehensive comparison, we 
choose two elliptical copula functions (Gaussian and t), three Archimedean copula 
functions (Clayton, Gumbel, and Frank), and two mixture copula functions (the 
mixture of Clayton and its survival copula and the mixture of Gumbel and its 
survival copula). Note that the parameters in copula functions are not specified to be 
time-varying; this allows us to concentrate on differences across dependence 
structures. However, allowing time-varying dependence can be a good choice when 
forecasting is the major concern, as in Patton (2004) and Lai et al. (2009). The 
following subsections summarize the copula densities used in the IFM estimation. 

2.3.1 Gaussian Copula 

Let RΦ  be the bivariate standard normal distribution with symmetric, positive 
definite correlation matrix R . The distribution function of the bivariate Gaussian 
copula is defined as follows: 

( ) ( ))(),(, 2
1

1
1

21 uuuuC Gaussian −− ΦΦΦ= RR ,  

where 1−Φ  is the inverse of the univariate standard normal distribution function. 
Let )( ii xu Φ= , so that )(1

ii ux −Φ= . The density function of the Gaussian copula 
can be written as follows: 

( ) ( ) ⎟
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2121 2
1exp1, TGaussian uuc , (9) 

where ( )Tuu )(),( 2
1

1
1 −− ΦΦ=ς . 

2.3.2 t Copula 

Let vT ,R  be the bivariate standardized t distribution with symmetric, positive 
definite correlation matrix R  and degrees of freedom v . The distribution function 
of bivariate t copula is defined as follows: 

( ) ( ))(),(, 2
1

1
1

,21, ututTuuC vvv
T

v
−−= RR ,  
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where 1−
vt  is the inverse of the univariate t distribution function with degrees of 

freedom v . Accordingly, the t copula density is: 

( )
∏
=

+−

+−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ
=

2

1

2)1(2

2)2(
1

2

21

21,

1

11

2
1

2

2

2
2

,

i

v

i

v
T

T
v

v

v
v

v

v

v

uuc
ς

ςRς
RR , (10) 

where )(1
ivi ut −=ς . 

2.3.3 Clayton Copula 

The Clayton copula is an asymmetric copula belonging to the Archimedean 
family. The degree of dependence is higher in the lower tail than in the upper. 
Genest and MacKay (1986) defined the Archimedean family as: 

( ) ( ))()(, 21
]1[

21 uuuuC Arch ϕϕϕ += − , (11) 

where ϕ  is a strict generator function which is continuous, decreasing (i.e., 
0<′ϕ ), and convex (i.e., 0>′′ϕ ) such that 0)1( =ϕ  and ∞=)0(ϕ . ]1[−ϕ  is the 

pseudo-inverse of ϕ  with ],0[Dom ]1[ ∞=−ϕ  and I=− ]1[Ran ϕ  given by: 
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Strict generator functions of an Archimedean copula can be derived from the 
inverse of the Laplace transform of a given distribution function. Different generator 
functions will induce different Archimedean copulas. 

Given the distribution function and generator function of an Archimedean 
copula, the density copula can be derived using either of the following relationships: 
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The generator function of a Clayton copula is αϕ α )1()( −= −tt , where α  is 
the shape parameter and ],0()0,1[ +∞∪−∈α . It is easy to see ∞=)0(ϕ  and 

0)1( =ϕ . Using (11) and (12), the distribution function of a Clayton copula can be 
given by: 

( ) ( )0,)1(max, /1
2121

ααα
α

−−− −+= uuuuC Clayton ,  

and using (13) or (14), the density function can be expressed as: 
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2.3.4 Gumbel Copula 

The Gumbel copula is also asymmetric. It has a higher degree of dependence in 
the upper tail. The generator function of the Gumbel copula is αϕ )log()( tt −= , 

),1[ ∞+∈α . It is easy to see ∞=)0(ϕ  and 0)1( =ϕ . Using (11) and (12), the 
distribution function of the Gumbel copula is derived as: 
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and the density function is: 
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2.3.5 Frank Copula 

The Frank copula is a symmetric copula in the Archimedean family. Its 
generator function is [ ])1[)1(log)( −−−= −− ααϕ eet t  with ),0()0,( ∞+∪−∞∈α . 
The distribution function of the Frank copula is: 
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and the density function is: 
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2.3.6 Mixture Copula 

A mixture copula is still a copula, as shown by Li (2000), and is formed by the 
weighted average of two or more copulas. If 1C  and 2C  are copulas, and 1w  and 

2w  are corresponding weights (with 121 =+ ww ), the mixture copula can be 
written as: 

);,();,(),;,( 22122121112121 αααα uuCwuuCwuuC += ,  

where 1α  and 21α  are parameters for 1C  and 2C . It is straightforward to obtain 
the density via (14): 

);,();,(),;,( 22122121112121 αααα uucwuucwuuc += . (18) 
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Mixture copulas can be used to combine different copulas. For instance, when 1C  
has lower tail dependence but not upper tail dependence and the dependence 
structure for 2C  is reversed, the two-parameter mixture copula provides greater 
flexibility than either one-parameter copula. Furthermore, when 2C  is the survival 
copula of 1C , mixture copulas can be symmetric or asymmetric depending on the 
weights. A survival copula associated with a copula is defined as: 

);1,1(1),Pr();,( 2121221121 αα uuCuuuUuUuuSC −−+−+=>>= ,  

where α  is the parameter. Survival copulas are the mirror images of corresponding 
copulas. 

Mixture copulas have been widely used in financial research. Fortin and 
Kuzmics (2002) improved the fit achieved with common one-parameter copula 
models by means of mixtures for a set of European stocks. Patton (2006) proposed a 
symmetrized mixture between a Clayton copula and its survival copula with weights 

5.021 == ww , which may provide a better fit. Chollete et al. (2005) also argued in 
favor of mixture copulas. 

One should be cautious when interpreting the asymmetry studied in this paper. 
The asymmetry of the GJR-GARCH model for individual returns refers to its 
volatility, which reflects asymmetric response to past shocks. However, the 
distribution of the GJR-GARCH model is specified using a t distribution in this 
paper, which exhibits a symmetric pattern to help us focus on the asymmetry in the 
dependence structure. In contrast, the asymmetry of the bivariate distribution, 
sometimes called co-skewness, indicates that the first returns probability distribution 
may be skewed to the right (left) of the distribution of the second returns and 
represents a higher (lower) probability of extreme positive (negative) returns in both 
markets. This kind of asymmetry, which is the core of this paper, is dominated by 
copula functions and has been employed in literature on the higher-moment capital 
pricing model and the formation of portfolio strategies (Friend and Westerfield, 
1980; Garcia and Tsafack, 2008). 

2.4 Calculating Portfolio VaR 

By definition, the VaR of two-asset portfolio returns with 5% level in the next 
period is the point in the one-day-ahead forecasted portfolio returns distribution at 
time t , f

tD , that corresponds to the lower 5% tail. That is, %5)( =VaRD f
t . CVaR 

is the expected value of the one-day-ahead forecasted portfolio returns f
tpR ,  at time 

t  given that f
tpR ,  is worse than VaR. Mathematically, CVaR can be formulated as 

follows: 

)|( ,, VaRRRECVaR f
tp

f
tp <= .  

Once the estimates of the bivariate copula-GJR-GARCH model described in 
the previous section are obtained at time t , we use a simulation procedure to 
calculate the 5% portfolio VaR and CVaR in the next period (i.e., 1+t ): 
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Step 1 Simulate j  random samples of sim
t,1η  and sim

t,2η  from the specified copula 
distribution. 

Step 2 Use the simulated random samples and the one-step-ahead forecasts of the 
GJR-GARCH volatility ( f

th ,1  and f
th ,2 ) to generate the simulated residuals, 

defined as f
t

sim
t

sim
t h ,1,1,1 ηε =  and f

t
sim

t
sim

t h ,2,2,2 ηε = . 
Step 3 Calculate the one-day-ahead forecast of the asset returns by 

sim
ttt

f
t RaRaaR ,11,221,110,1 ˆˆˆ ε+++= −−  and sim

ttt
f
t RbRbbR ,21,221,110,2

ˆˆˆ ε+++= −−  
where iâ  and ib  are estimates in the marginal GJR-GARCH models 
discussed in Section 2.2. 

Step 4 Construct the distribution of the forecasts of the portfolio returns f
tpR ,  with 

specified portfolio weight w  with respect to asset 1 by 
f
t

f
t

f
tp RwwRR ,2,1, )1( −+= . 

Step 5 Measure VaR as the value of the 5% quantile in the distribution of the 
forecasts of portfolio returns ( f

tpR , ). Measure CVaR as the mean value of 
the situations that f

tpR ,  exceeds the VaR. 

Steps 1 to 5 are repeated until the end of the forecast period. 
In contrast, the VaR of the DCC model is usually calculated by an analytical 

method that can be formulated as: 

wΣwRw R
f

t
f
t zVaR ,%5 ′+′= ,  

where w  is the weight vector, f
tR  and f

t,RΣ  are the vector of the one-day-ahead 
return forecasts and the covariance matrix at time t , and %5z  is the left quantile of 
the normal distribution corresponding to 5% probability. However, keeping the same 
basis for comparison, we employ the simulation method. That is, the one-day-ahead 
forecasts of the portfolio returns are calculated by wΣwzRw R

f
t

f
t

f
tpR ,, ′+′= , where 

z  is a j -dimensional random vector drawn from the normal distribution (the 
value of j  equals the simulation times in the copula simulation method). 
Consequently, the VaR is measured as the value of the 5% quantile in the 
distribution of portfolio return forecasts ( f

tpR , ) and the CVaR is calculated by the 
mean value of the situations that f

tpR ,  exceeds the VaR. 

2.5 Model Validation 

VaR models are only useful if they can be shown to be reasonably accurate. To 
do this, investors must systematically evaluate the validity of the VaR models 
through comparison between predicted and actual loss levels, a procedure known as 
backtesting. When a VaR model is built correctly, the probability of the number of 
observations falling outside the predicted VaR (known as exceptions) should be 
correspond to the nominal significance level. 

When backtesting a VaR model, we could make two types of statistical errors: 
Type I errors occur when we reject the model which is correct, while type II errors 
occur when we fail to reject (i.e., incorrectly accept) the wrong model. Obviously, in 
risk management, it can be much more costly to incur type II errors, and therefore 
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we should tolerate higher probability of Type I errors (α ) in order to lower the 
probability of Type II errors ( β ). Moreover, a lower significance level α  and 
small number of exceptions result in lower reliability. For example, choosing a 
significance level of 5% rather than 1%, we will observe more exception points and 
therefore have greater confidence in tests of model accuracy. 

Kupiec (1995) developed a test statistic to determine whether the observed 
frequency of exceptions is consistent with the frequency of expected exceptions 
according to the VaR model and chosen confidence interval, defined by the tail 
points of the log-likelihood ratio: 
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where 0T  is the number of losses not exceeding VaR and 1T  is the number of 
losses that exceed VaR. UCLR  is asymptotically distributed chi-square with 1 
degree of freedom under the null hypothesis that p  is the true probability of the 
occurrence of exceptions. The first term represents the maximal likelihood under the 
null hypothesis and the second term is the maximal likelihood for the observed data. 

Kupiec’s test only focuses on the frequency of exceptions and ignores the time 
dynamics of those exceptions. VaR models assume that exceptions should be 
independently distributed over time so that they should be unpredictable. If the 
exceptions exhibit some type of clustering, then the VaR model may fail under 
certain conditions, which could represent a potential problem. Following this logic, 
Christofferson (1998) developed a conditional coverage test ( CCLR ) that 
incorporates the indLR  statistic to test if today’s occurrence of an exception is 
independent of what happened the previous day; it is defined by: 
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where ijT  denotes the number of observations with state i  followed by state j , 
)( 1011 iiii TTT +=π  is the probability of observing an exception conditional in state 

i  the previous day, and 1=i  (or 1=j ) indicates that the VaR is exceeded. 
CCLR  is thus defined as indUCCC LRLRLR += , which asymptotically distributed 

chi-square with 2 degrees of freedom. In this study, we employ the CCLR  test 
statistic since it is more robust, especially if the markets go through periods of calm 
and turbulence (Jorion, 2000). 

3. Data and Results 

Here we examine daily price indices of three major stock markets: S&P500, 
FTSE, and DAX obtained from Datastream. For the price series tip ,  in market i , 
daily returns are calculated as )log(log100 1,,, −−= tititi ppR . The sample period is 
from January 1991 to March 2006. The last 250 observations are used for a 
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moving-window one-step-ahead out-of-sample accuracy test. That is, the length of 
the estimation period is fixed at 3725 observations, so that the start and end dates 
successively increase by one observation. For example, the first estimation period is 
1991/01/01–2005/04/08, the second is 1991/01/02–2005/04/09, and so on. 

Table 1 shows preliminary descriptive statistics. During the first estimation 
period (1991/01/01–2005/04/08), the average returns are positive for S&P500, FTSE, 
and DAX. The unconditional volatility, proxied by the sample standard deviation, 
indicates that the DAX was the most volatile and that S&P500 was the least volatile 
during this period. The skewness statistics suggest that returns are significantly 
negative-skewed, and the excess kurtosis statistics illustrate significant leptokurtosis 
for all markets (under normality). Consequently, the Jarque-Bera test statistics 
confirm that returns in all markets are significantly non-normal. In addition, test 
statistics for asymmetry in volatility proposed by Engle and Ng (1993) suggest a 
clear rejection of the null of no asymmetries in volatility of the return series. 

Table 1. Descriptive Statistics for Daily Log Return of the Data Set 

 S&P500 FTSE DAX 
N 3975 3975 3975 
Mean 0.035 0.026 0.037 
Standard deviation 0.992 1.011 1.403 
Skewness −0.098* −0.118* −0.288* 
Excess Kurtosis 4.277* 3.466* 4.401* 
JB test 3036.02* 1998.47* 3263.05* 
EN test 66.05* 112.00* 87.03* 
Notes: * denotes significance at the 5% level. JB test is the Jarque-Bera test statistic. EN test is the sign 
and size bias test statistic for asymmetry in volatility proposed by Engle and Ng (1993), which is 
asymptotically )3(2χ -distributed under the null hypothesis of no asymmetric effects. 

Table 2 shows the results from the copula-GJR-GARCH(1,1) models applied to 
the stock returns in each pair of markets. In the first column, “Marginal model 1” 
represents the market before the hyphen in the first row and “Marginal model 2” 
represents the market after the hyphen. Most of the estimates for the marginal 
models are significant, and all of them satisfy the stationarity condition of the 
GJR-GARCH model. The degrees of freedom for the t  distributions for each index 
returns are all reasonably low, ranging from 7 to 13, and indicate that the use of 
t-distributed errors is more appropriate than normal distributed errors. They also 
imply the existence of the fourth moment in each market return series (since they 
exceed 4). Since the errors are assumed to be t distributed and the Ljung-Box Q 
statistics are based on a normality assumption, Smith (1985) suggests using the CDF 
of the t distribution with the estimated degrees of freedom to transform the original 
standardized residuals into cumulative probabilities and then map these probabilities 
into standard normal variables using the inverse Gaussian CDF function. The 
resulting series will follow a standard normal distribution. The Ljung-Box Q 
statistics on the transformed standardized residuals and squared transformed 
standardized residuals suggest the absence of serial correlation up to 10 lags at the 
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5% significance level. The non-significant Engle-Ng test statistics suggest the 
standardized residuals do not suffer from asymmetry in volatility, implying the 
GJR-GARCH t-distributed error models seem well specified. We do not eliminate 
the non-significant estimates here but do so in the forecasting procedure. The bottom 
half of Table 2 also reports the results for the seven copula dependence models and 
for the DCC model. All estimates are significant. 

Table 3 reports the p-values of the CCLR  test statistics for each two-asset 
portfolio with different weights. At the 5% significance level, the DCC model and 
most copula models are accepted in all long positions across portfolios (the 
exceptions are t and Frank where 93% of long positions are accepted), while the 
DCC, Gumbel, and mixture Clayton models are accepted in all short positions across 
portfolios. Overall, the DCC, Gumbel, and mixture Clayton models are accepted for 
all portfolios and weights. We also perform the dynamic quantile test (Engle and 
Manganelli, 2004), which has higher statistical power, by investigating the 
regression of α−<= )( ttt VaRRIHits  on lagged tHits  and lagged tVaR  (up to 
four time periods). The results (no reported but available upon request) show that 
almost all cases pass the backtesting procedure except (−0.5, −0.5) in the 
S&P500-DAX market pair at the 5% level. Since the results of the dynamic quantile 
test seems a looser criterion for selecting models than does CCLR , we leave CCLR  
as the backtesting method in this paper and evaluate “capital saving” via this stricter 
criterion. 

Since the DCC, Gumbel, and mixture Clayton models are accepted in all cases, 
and the Gaussian, Clayton, and mixture Gumbel are accepted in all long position 
cases, what is the improvement of copula models compared with the DCC model? 
The Basel Committee (1996) mandates that banks can use a valid VaR model to set 
aside capital for market risk of the holding portfolios, implying that a valid model 
generating a lower value of VaR can reduce more capital charges for market risks. 
In addition, a lower CVaR represents lower expected loss if the actual portfolio 
returns are worse than the VaR. Based on these concepts, we apply the percentage 
difference of VaR and CVaR between each copula and the DCC models as measures 
of the relative performance. The percentage difference of VaR is defined as capital 
saving, and the percentage difference of CVaR is defined as potential loss reduction. 
Table 4 reports both measures for each copula models compared with the DCC 
model across different portfolios with different positions. Note that we only report 
the results for those 100% accepted models in Table 3. 
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Table 2. Parameter Estimates and Standard Errors for the Copula-GJR-GARCH Models 

  S&P500-FTSE S&P500-DAX FTSE-DAX 
  Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. 

Marginal model 1 0a  0.038* (0.012) 0.039* (0.012) 0.025** (0.013) 
 1a  -0.007 (0.018) 0.001 (0.018) 0.025 (0.020) 
 2a  0.016 (0.016) -0.002 (0.011) -0.018 (0.014) 
 0α  0.006* (0.001) 0.006* (0.001) 0.009* (0.002) 
 1α  0.002 (0.007) 0.002 (0.007) 0.008 (0.007) 
 2α  0.091* (0.012) 0.090* (0.012) 0.085* (0.011) 
 3α  0.946* (0.007) 0.947* (0.007) 0.939* (0.007) 
 1v  7.053* (0.738) 7.051* (0.738) 11.460* (1.524) 
 )10(Q  14.041 [0.171] 13.669 [0.189] 11.777 [0.300] 
 )10(2Q  12.339 [0.263] 12.725 [0.239] 13.989 [0.174] 
 EN test 4.864 3.637 4.128 

Marginal model 2 0b  0.013 (0.012) 0.043* (0.015) 0.052* (0.016) 
 1b  -0.104* (0.017) -0.124* (0.017) -0.088* (0.020) 
 2b  0.301* (0.016) 0.444* (0.019) 0.183* (0.023) 
 0β  0.008* (0.002) 0.010* (0.003) 0.016* (0.004) 
 1β  0.007 (0.006) 0.052* (0.011) 0.043* (0.011) 
 2β  0.087* (0.012) 0.047* (0.014) 0.068* (0.014) 
 3β  0.940* (0.007) 0.920* (0.008) 0.913* (0.009) 
 2v  12.322* (1.763) 8.330* (0.679) 8.235* (0.692) 
 )10(Q  12.362 [0.262] 8.464 [0.584] 10.972 [0.360] 
 )10(2Q  11.679 [0.307] 5.321 [0.869] 15.007 [0.132] 
 EN test 0.613 4.646 6.655 

DCC 1θ  0.006* (0.001) 0.011* (0.001) 0.034* (0.001) 
 2θ  0.988* (0.003) 0.988* (0.001) 0.960* (0.001) 

Gaussian nρ  0.390* (0.012) 0.363* (0.012) 0.588* (0.008) 
t tρ  0.388* (0.014) 0.364* (0.014) 0.596* (0.010) 
 v  13.154* (3.243) 12.142* (2.819) 7.774* (1.105) 

Clayton cθ  0.458* (0.023) 0.391* (0.021) 0.950* (0.027) 
Gumbel gθ  1.313* (0.016) 1.298* (0.016) 1.619* (0.019) 
Frank fθ  2.399* (0.101) 2.267* (0.099) 4.352* (0.109) 

Mixture Clayton mcθ  0.582* (0.074) 0.421* (0.075) 1.070* (0.072) 
 micθ  0.738* (0.090) 0.800* (0.132) 1.705* (0.195) 
 mcw  0.503* (0.053) 0.510* (0.066) 0.637* (0.032) 

Mixture Gumbel mgθ  1.366* (0.030) 1.319* (0.122) 2.070* (0.083) 
 migθ  1.296* (0.034) 1.295* (0.239) 1.537* (0.034) 

 mgw  0.537* (0.055) 0.669* (0.159) 0.335* (0.037) 
Notes: * and ** denote the 5% and 10% levels. )10(Q  and )10(2Q  are Ljung-Box autocorrelation test 
statistic for transformed standardized residuals and squared standardized residuals up to 10 lags. 
Ljung-Box Q statistic p-values are in brackets. EN test is the sign and size bias test statistics for 
asymmetry in volatility proposed by Engle and Ng (1993), which is asymptotically )3(2χ -distributed 
under the null hypothesis of no asymmetric effects. 



YiHao Lai 

 

263 

Table 3. P-Values for CCLR  Accuracy Tests 

 Symmetric dependence structure Asymmetric dependence structure 

 DCC  Gaussian t Frank Clayton Gumbel
Mixture 
Clayton 

 
Mixture 
Gumbel 

 

S&P500-FTSE       
Long position       

(0.5, 0.5) 0.545  0.097 0.181 0.290 0.539 0.539 0.539  0.539  
(0.25, 0.75) 0.404  0.097 0.097 0.181 0.396 0.396 0.396  0.396  
(0.75, 0.25) 0.290  0.097 0.097 0.097 0.483 0.886 0.886  0.483  

(1.25, −0.25) 0.342  0.290 0.097 0.043 * 0.342 0.342 0.342  0.342  
(−0.25, 1.25) 0.290  0.097 0.097 0.181 0.290 0.290 0.290  0.290  

Short position       
(−0.5, −0.5) 0.496  0.097 0.043 * 0.097 0.457 0.918 0.918  0.918  

(−0.25, −0.75) 0.539  0.290 0.290 0.290 0.133 0.207 0.298  0.207  
(−0.75, −0.25) 0.404  0.043 * 0.097 0.097 0.496 0.404 0.496  0.496  

(−1.25, 0.25) 0.181  0.016 * 0.004 * 0.004 * 0.097 0.181 0.181  0.181  
(0.25, −1.25) 0.483  0.404 0.404 0.290 0.539 0.298 0.396  0.396  

S&P500-−DAX       
Long position       

(0.5, 0.5) 0.545  0.181 0.097 0.404 0.267 0.126 0.298  0.396  
(0.25, 0.75) 0.858  0.530 0.530 0.530 0.191 0.191 0.191  0.191  
(0.75, 0.25) 0.404  0.097 0.097 0.097 0.396 0.396 0.396  0.396  

(1.25, −0.25) 0.530  0.088 0.034 * 0.088 0.530 0.530 0.530  0.530  
(−0.25, 1.25) 0.918  0.342 0.530 0.342 0.776 0.886 0.776  0.776  

Short position       
(−0.5, −0.5) 0.886  0.097 0.097 0.181 0.457 0.621 0.621  0.621  

(−0.25, −0.75) 0.918  0.097 0.097 0.097 0.021 * 0.120 0.120  0.031 * 
(−0.75, −0.25) 0.404  0.097 0.043 * 0.097 0.545 0.496 0.496  0.496  

(−1.25, 0.25) 0.290  0.001 * 0.004 * 0.004 * 0.016 * 0.290 0.181  0.181  
(0.25, −1.25) 0.284  0.192 0.192 0.192 0.284 0.124 0.124  0.124  

FTSE−-DAX       
Long position       

(0.5, 0.5) 0.717  0.530 0.190 0.530 0.190 0.717 0.344  0.344  
(0.25, 0.75) 0.717  0.342 0.342 0.342 0.191 0.191 0.191  0.126  
(0.75, 0.25) 0.717  0.530 0.530 0.530 0.406 0.134 0.406  0.406  

(1.25, −0.25) 0.190  0.097 0.097 0.097 0.190 0.181 0.190  0.190  
(−0.25, 1.25) 0.776  0.342 0.342 0.342 0.776 0.776 0.776  0.776  

Short position       
(−0.5, −0.5) 0.284  0.545 0.545 0.545 0.191 0.436 0.436  0.436  

(−0.25, −0.75) 0.367  0.192 0.113 0.192 0.120 0.120 0.120  0.120  
(−0.75, −0.25) 0.483  0.404 0.404 0.404 0.133 0.298 0.298  0.396  

(−1.25, 0.25) 0.496  0.016 * 0.016 * 0.016 * 0.097 0.496 0.181  0.181  
(0.25, −1.25) 0.072  0.290 0.290 0.290 0.072 0.101 0.101  0.101  

Long position 100%  100% 93% 93% 100% 100% 100%  100%  
Short position 100%  73% 67% 80% 87% 100% 100%  93%  
Overall 100%  87% 80% 87% 93% 100% 100%  97%  
Notes: * denotes significance at the 5% level. 
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Table 4. Performance Comparison 

Symmetric dependence structure Asymmetric dependence structure 

DCC Gaussian Clayton Gumbel Mixture Clayton Mixture Gumbel 

Average 

VaR 

Average 

CVaR 

Average 

VaR 

Average 

CVaR

Average 

VaR 

Average 

CVaR

Average 

VaR 

Average 

CVaR

Average 

VaR 

Average 

CVaR

Average 

VaR 

Average 

CVaR 

S&P500-FTSE             

Long position             

(0.5, 0.5) -0.851 -1.072 -0.958 -1.272 -0.777 -0.981 -0.764 -0.948 -0.776 -0.968 -0.777 -0.970 

― ― (12.57) (18.66) (-8.70) (-8.49) (-10.22) (-11.57) (-8.81) (-9.70) (-8.70) (-9.51) 

(0.25, 0.75) -0.855 -1.075 -0.941 -1.234 -0.771 -0.963 -0.765 -0.943 -0.773 -0.956 -0.773 -0.957 

― ― (10.06) (14.79) (-9.82) (-10.42) (-10.53) (-12.28) (-9.59) (-11.07) (-9.59) (-10.98) 

(0.75, 0.25) -0.936 -1.181 -1.070 -1.453 -0.873 -1.102 -0.873 -1.094 -0.879 -1.101 -0.878 -1.101 

― ― (14.32) (23.03) (-6.73) (-6.69) (-6.73) (-7.37) (-6.09) (-6.77) (-6.20) (-6.77) 

(1.25, −0.25) -1.285 -1.623 -1.485 -2.049 -1.256 -1.579 -1.284 -1.631 -1.261 -1.596 -1.260 -1.595 

― ― (15.56) (26.25) (-2.26) (-2.71) (-0.08) (0.49) (-1.87) (-1.66) (-1.95) (-1.73) 

(−0.25, 1.25) -1.117 -1.400 -1.207 -1.581 -1.054 -1.293 -1.074 -1.333 -1.053 -1.302 -1.052 -1.302 

― ― (8.06) (12.93) (-5.64) (-7.64) (-3.85) (-4.79) (-5.73) (-7.00) (-5.82) (-7.00) 

Sub-average ― ― 12.1% 19.1% -6.6% -7.2% -6.3% -7.1% -6.4% -7.2% -6.5% -7.2% 

Short position             

(−0.5, −0.5) -0.890 -1.112 ― ― ― ― -0.829 -1.037 -0.822 -1.020 ― ― 

― ― ― ― ― ― (-6.85) (-6.74) (-7.64) (-8.27) ― ― 

(−0.25, −0.75) -0.878 -1.098 ― ― ― ― -0.804 -0.999 -0.801 -0.989 ― ― 

― ― ― ― ― ― (-8.43) (-9.02) (-8.77) (-9.93) ― ― 

(−0.75, −0.25) -0.992 -1.237 ― ― ― ― -0.937 -1.169 -0.938 -1.165 ― ― 

― ― ― ― ― ― (-5.54) (-5.50) (-5.44) (-5.82) ― ― 

(−1.25, 0.25) -1.374 -1.712 ― ― ― ― -1.330 -1.651 -1.345 -1.676 ― ― 

― ― ― ― ― ― (-3.20) (-3.56) (-2.11) (-2.10) ― ― 

(0.25, −1.25) -1.107 -1.390 ― ― ― ― -1.025 -1.264 -1.038 -1.283 ― ― 

― ― ― ― ― ― (-7.41) (-9.06) (-6.23) (-7.70) ― ― 

Sub-average ― ― ― ― ― ― -6.3% -6.8% -6.0% -6.8% ― ― 

S&P500-DAX             

Long position             

(0.5, 0.5) -0.990 -1.252 -1.116 -1.490 -0.895 -1.138 -0.888 -1.109 -0.896 -1.123 -0.899 -1.127 

― ― (12.73) (19.01) (-9.60) (-9.11) (-10.30) (-11.42) (-9.49) (-10.30) (-9.19) (-9.98) 

(0.25, 0.75) -1.097 -1.387 -1.228 -1.646 -1.000 -1.262 -1.004 -1.254 -1.007 -1.259 -1.008 -1.261 

― ― (11.94) (18.67) (-8.84) (-9.01) (-8.48) (-9.59) (-8.20) (-9.23) (-8.11) (-9.08) 

(0.75, 0.25) -0.986 -1.246 -1.123 -1.521 -0.907 -1.152 -0.908 -1.139 -0.913 -1.147 -0.914 -1.149 

― ― (13.89) (22.07) (-8.01) (-7.54) (-7.91) (-8.59) (-7.40) (-7.95) (-7.30) (-7.78) 

(1.25, −0.25) -1.272 -1.604 -1.481 -2.037 -1.274 -1.600 -1.291 -1.641 -1.275 -1.614 -1.270 -1.612 

― ― (16.43) (27.00) (0.16) (-0.25) (1.49) (2.31) (0.24) (0.62) (-0.16) (0.50) 

(−0.25, 1.25) -1.523 -1.922 -1.713 -2.312 -1.468 -1.832 -1.488 -1.873 -1.473 -1.849 -1.469 -1.845 

― ― (12.48) (20.29) (-3.61) (-4.68) (-2.30) (-2.55) (-3.28) (-3.80) (-3.55) (-4.01) 

Sub-average ― ― 13.5% 21.4% -6.0% -6.1% -5.5% -6.0% -5.6% -6.1% -5.7% -6.1% 
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Symmetric dependence structure Asymmetric dependence structure 

DCC Gaussian Clayton Gumbel Mixture Clayton Mixture Gumbel 

Average 

VaR 

Average 

CVaR 

Average 

VaR 

Average 

CVaR

Average 

VaR 

Average 

CVaR

Average 

VaR 

Average 

CVaR

Average 

VaR 

Average 

CVaR

Average 

VaR 

Average 

CVaR 

Short position
            

(−0.5, −0.5) -1.072 -1.334 ― ― ― ― -1.000 -1.250 -0.992 -1.232 ― ― 
― ― ― ― ― ― (-6.72) (-6.30) (-7.46) (-7.65) ― ― 

(−0.25, −0.75) -1.184 -1.474 ― ― ― ― -1.102 -1.367 -1.101 -1.360 ― ― 
― ― ― ― ― ― (-6.93) (-7.26) (-7.01) (-7.73) ― ― 

(−0.75, −0.25) -1.064 -1.324 ― ― ― ― -1.001 -1.250 -0.999 -1.241 ― ― 
― ― ― ― ― ― (-5.92) (-5.59) (-6.11) (-6.27) ― ― 

(−1.25.0.25) -1.342 -1.674 ― ― ― ― -1.313 -1.633 -1.328 -1.657 ― ― 
― ― ― ― ― ― (-2.16) (-2.45) (-1.04) (-1.02) ― ― 

(0.25, −1.25) -1.618 -2.017 ― ― ― ― -1.538 -1.895 -1.553 -1.919 ― ― 
― ― ― ― ― ― (-4.94) (-6.05) (-4.02) (-4.86) ― ― 

Sub-average ― ― ― ― ― ― -5.3% -5.5% -5.1% -5.5% ― ― 

FTSE-DAX             
Long position             

(0.5, 0.5) -1.097 -1.386 -1.172 -1.559 -0.954 -1.194 -0.920 -1.138 -0.950 -1.178 -0.950 -1.182 
― ― (6.84) (12.48) (-13.04) (-13.85) (-16.13) (-17.89) (-13.40) (-15.01) (-13.40) (-14.72) 

(0.25, 0.75) -1.215 -1.536 -1.329 -1.785 -1.081 -1.351 -1.071 -1.337 -1.084 -1.352 -1.081 -1.351 
― ― (9.38) (16.21) (-11.03) (-12.04) (-11.85) (-12.96) (-10.78) (-11.98) (-11.03) (-12.04) 

(0.75, 0.25) -1.018 -1.285 -1.084 -1.432 -0.885 -1.101 -0.860 -1.059 -0.882 -1.090 -0.881 -1.092 
― ― (6.48) (11.44) (-13.06) (-14.32) (-15.52) (-17.59) (-13.36) (-15.18) (-13.46) (-15.02) 

(1.25, −0.25) -1.018 -1.281 -1.171 -1.552 -1.005 -1.228 -1.055 -1.325 -1.007 -1.251 -1.003 -1.248 
― ― (15.03) (21.16) (-1.28) (-4.14) (3.63) (3.43) (-1.08) (-2.34) (-1.47) (-2.58) 

(−0.25.1.25) -1.532 -1.938 -1.770 -2.405 -1.468 -1.819 -1.524 -1.931 -1.480 -1.856 -1.474 -1.850 
― ― (15.54) (24.10) (-4.18) (-6.14) (-0.52) (-0.36) (-3.39) (-4.23) (-3.79) (-4.54) 

Sub-average ― ― 10.7% 17.1% -8.5% -10.1% -8.1% -9.1% -8.4% -9.8% -8.6% -9.8% 
Short position             

(−0.5, −0.5) -1.177 -1.466 ― ― ― ― -1.040 -1.284 -1.014 -1.238 ― ― 
― ― ― ― ― ― (-11.64) (-12.41) (-13.85) (-15.55) ― ― 

(−0.25, −0.75) -1.312 -1.633 ― ― ― ― -1.185 -1.459 -1.178 -1.441 ― ― 
― ― ― ― ― ― (-9.68) (-10.66) (-10.21) (-11.76) ― ― 

(−0.75, −0.25) -1.082 -1.349 ― ― ― ― -0.954 -1.173 -0.935 -1.139 ― ― 
― ― ― ― ― ― (-11.83) (-13.05) (-13.59) (-15.57) ― ― 

(−1.25, 0.25) -1.049 -1.312 ― ― ― ― -1.024 -1.257 -1.056 -1.325 ― ― 
― ― ― ― ― ― (-2.38) (-4.19) (0.67) (0.99) ― ― 

(0.25, −1.25) -1.661 -2.067 ― ― ― ― -1.596 -1.956 -1.633 -2.025 ― ― 
― ― ― ― ― ― (-3.91) (-5.37) (-1.69) (-2.03) ― ― 

Sub-average ― ― ― ― ― ― -7.9% -9.1% -7.7% -8.8 ― ― 

Long position ― ― 12.1 % 19.2 % -7.0 % -7.8 % -6.6 % -7.4 % -6.8 % -7.7 % -6.9 % -7.7 % 
Short Position ― ― ― ― ― ― -6.5 % -7.1 % -6.3 % -7.0 % ― ― 
Overall ― ― ― ― ― ― -6.6 % -7.3 % -6.6 % -7.4 % ― ― 
Notes: Percentage differences of VaR and CVaR of each copula model and the DCC model are in 
parentheses. 
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Based on the criterion of capital saving (i.e., percentage difference of VaR), 
Clayton is performs best in the S&P500-FTSE and S&P500-DAX portfolios for the 
long position, saving on average 6.6% and 6.0% capital charges of market risk 
compared with the DCC model, while the mixture Gumbel is performs best in the 
FTSE-DAX portfolio, saving on average 8.6% capital charges. For short positions, 
the Gumbel model saves on average 6.3% capital charges in the S&P500-FTSE, 
5.3% in the S&P500-DAX, and 7.9% in the FTSE-DAX portfolio. Considering both 
long and short positions, the Gumbel and mixture Clayton models save on average 
6.6% capital charges. Averaging across portfolios with different weights, the 
Clayton and Gumbel perform best for long and short positions, saving 7.0% and 
6.5% capital charges. Overall, the performances of the Gumbel and mixture Clayton 
both outperform the DCC, saving 6.6% capital charges. Taking the numerical 
example mentioned in Section 1 as benchmark, the models with asymmetric 
dependence structure could deliver profits of at least three million dollars per year. 

According to the criterion of potential loss reduction (i.e., percentage difference 
of CVaR), the Clayton, Gumbel, mixture Clayton, and mixture Gumbel modes all 
have about 7% lower potential loss in the S&P500-FTSE compared with the DCC 
for long positions, 6% in the S&P500-DAX, and 10% in the FTSE-DAX portfolios. 
For short positions, the Gumbel and mixture Clayton models have 6.8% lower 
potential loss compared with the DCC in the S&P500-FTSE, 5.5% in the 
S&P500-DAX, and 9% in the FTSE-DAX portfolios. Considering both long and 
short positions, the Gumbel and mixture Clayton models have about 7% lower 
potential loss. Averaging across portfolios with different weights, the Clayton and 
Gumbel still perform best for long and short positions (7.8% and 7.1% lower 
potential loss). Overall, the Gumbel and mixture Clayton models have similar 
potential loss reduction. According to these results, we find that the asymmetric 
copula models indeed outperform the symmetric DCC and symmetric copula models, 
implying the importance of asymmetric dependence structure. 

4. Conclusions 

It has been widely accepted that stock returns are asymmetrically dependent 
across markets. To investigate the importance of asymmetric dependence structures 
in VaR calculations, we introduce copulas. This work shows that many copula 
models are acceptable and satisfy backtesting validation, as does the competing 
DCC model. However, under similar levels of acceptability, the copula models with 
asymmetric dependence structures can save capital charges for market risks and 
reduce potential loss compared with the DCC model. Since copula models with 
asymmetric dependence structures also work better than symmetric models based on 
the two criteria we propose, the results also imply that asymmetric dependence 
structures are of great importance in improving VaR calculations and deliver 
potential economic values. Since banks or firms always have an incentive to take 
higher risks and thus to choose a model which generates lower economic capital 
charges for capital conservation, the capital saving resulting from one model over 
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the other can be a measure of that incentive and could be applied to select models 
from an economic viewpoint, which is an important contribution of this paper. 
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