International Journal of Business and Economics, 2009, Vol. 8, No. 1, 83-86

A Note on Second-Order Conditions for Maximizing Monopolist's Revenue and a Quantity-Setting Symmetric Duopoly

Jong-Shin Wei*

Department of International Business, Wenzao Ursuline College of Languages, Taiwan

Key words: second-order condition; revenue maximization; duopoly; price-setting; quantity-setting

JEL classification: A22; B41; C60; D42; D43

1. Motives and Results

Assume throughout that the market demand curve is downward-sloping and supported by a twice-continuously differentiable demand function f, whose inverse function is denoted by g. If the market demand is to be satisfied by a monopolist, her (total) revenue is TR = f(P)P = g(Q)Q. Most students in principles of economics course know that choosing P to maximize TR is equivalent to choosing Q to maximize TR. What are not mentioned in textbooks for (intermediate) microeconomics or introductory mathematical economics are two technical issues:

- (1) Can we say that the second-order condition of "choosing P to maximize f(P)P" is satisfied *if and only if* that of "choosing Q to maximize g(Q)Q" is satisfied?
- (2) Duopoly naturally follows monopoly in course coverage. If the second-order condition of "choosing Q to maximize g(Q)Q" is satisfied, must the second-order condition of "for each i of $\{1, 2\}$ and at each given q_i ($j \neq i$), choosing q_i to maximize $g(q_1 + q_2)q_i$ " be satisfied? How about the converse?

Obviously, for any concave demand function $(d^2 f(P)/dP^2 \le 0)$, both the second-order condition of "choosing P to maximize f(P)P" and that of "choosing Q to maximize g(Q)Q" are satisfied. When the demand is strictly convex $(d^2 f(P)/dP^2 > 0)$, we show that neither of these two second-order conditions implies the another.

As to (2), it is about maximizing monopolist's revenue and finding the

^{*}Correspondence to: Department of International Business, Wenzao Ursuline College of Languages, TAIWAN. Email: jsw12011958@gmail.com; Phone: 886-7-3426031 ext.6222. This work was inspired by a conversation with Chih-Min Pan. Editorial comments from a board member also helps. The usual disclaimer applies.

International Journal of Business and Economics

revenue-maximizing output decision for each firm in a symmetric duopoly. [With a constant average and marginal cost c > 0, we can change the term revenue-maximizing to profit-maximizing.] We show that for strictly convex demand, the second-order condition of "choosing Q to maximize g(Q)Q" is satisfied *if and only if* the second-order condition of "for each *i* of $\{1, 2\}$ and at each given q_j ($j \neq i$), choosing q_i to maximize $g(q_1 + q_2)q_i$ " is satisfied. An interesting example concludes.

2. Revenue Maximization for a Monopolist

A standard and simplest way to teach revenue maximization starts with a linear Q = f(P) := a - bPa > 0demand, say with and b > 0. Here. $TR = f(P)P = aP - bP^2$, strictly concave in P, likewise for $TR = g(Q)Q = (aQ - Q^2)b^{-1}$. The intuitive explanation of why both second-order conditions (in revenue maximization) are satisfied is easy: f(P) (resp. g(Q)) is linear in P (resp. Q) and negatively correlated with P (resp. Q). What if f(P) (resp. g(Q)) is not linear in P (resp. Q)? The instinct tells us that for strictly concave demand function $(d^2 f(P)/dP^2 < 0)$, hence $d^2 g(Q)/dQ^2 < 0)$, both second-order conditions in (1) are satisfied. The following simple algebra tells it all. At P_0 ,

 $d[f(P)P]/dP = f(P_0) + [df(P)/dP]P_0$ (with df(P)/dP evaluated at $P = P_0$) and $d^2[f(P)P]/dP^2 = 2[df(P)/dP] + [d^2f(P)/dP^2]P_0$.

Likewise, at Q_0 ,

$$d[g(Q)Q]/dQ = g(Q_0) + [dg(Q)/dQ]Q_0$$
 (with $dg(Q)/dQ$ evaluated at $Q = Q_0$) and $d^2[g(Q)Q]/dQ^2 = 2[dg(Q)/dQ] + [d^2g(Q)/dQ^2]Q_0$.

By df(P)/dP < 0 and dg(Q)/dQ < 0, we see that $d^2[f(P)P]/dP^2 < 0$ and $d^2[g(Q)Q]/dQ^2 < 0$ as long as $d^2f(P)/dP^2 \le 0$ (or $d^2g(Q)/dQ^2 \le 0$). So, we only have to worry about the case of strictly convex demand.

Consider the function $P = g(Q) := e^{-Q}$ defined for all non-negative Q. Such a strictly convex demand can be found in Forshner and Shy (2009) as well as Amir and Grilo (1999). At $P_0 > 0$,

$$\begin{split} d[f(P)P]/dP &= -1 + ln(P_0) = 0 \quad \text{if} \quad P_0 = e^{-1} \, . \\ d^2[f(P)P]/dP^2 &= -1/P_0 < 0 \, . \end{split}$$

At $Q_0 > 0$,

 $d[g(Q)Q]/dQ = e^{-Q_0}(1-Q_0)$ is positive if $Q_0 < 1$; zero if $Q_0 = 1$; negative if $Q_0 > 1$.

84

 $d^{2}[g(Q)Q]/dQ^{2} = e^{-Q_{0}}(Q_{0}-2)$ is negative if $Q_{0} < 2$; zero if $Q_{0} = 2$; positive if $Q_{0} > 2$.

We see that f(P)P is strictly concave in P yet g(Q)Q is strictly concave only for Q in [0, 2]. In this case and thru either method, revenue is maximized at $P = e^{-1}$ (and Q = 1). The magnitude of 2[df(P)/dP] must have dominated that of $[d^2f(P)/dP^2]P_0$ (for all P_0) while on the contrary, the magnitude of 2[dg(Q)/dQ] is less than that of $[d^2g(Q)/dQ^2]Q_0$ for all $Q_0 > 2$.

The example given above shows that fulfilling the second-order condition of "choosing *P* to maximize f(P)P" does not imply that the second-order condition of "choosing *Q* to maximize g(Q)Q". To see why the converse does not hold, consider the iso-elastic demand function $Q = f(P) := P^{-2}$ defined for all P > 0. Note that TR is $g(Q)Q = Q^{0.5}$ defined for Q > 0 and that $d^2[g(Q)Q]/dQ^2 = -(1/4)Q^{-3/2} < 0$, yet $d^2[f(P)P]/dP^2 = 4P^{-3} > 0$. Having addressed issue (1), we can convince students why they should not give it up easily when the second-order condition at hand is not satisfied.

3. A Link with Revenue Maximization in a Quantity-Setting Duopoly

Suppose instead that two firms are competing in a quantity-setting symmetric duopoly. To find the Nash equilibrium, for each i of $\{1, 2\}$, firm i shall, at each given q_i (with $j \neq i$), choose q_i to maximize her profit $q_i g(q_1 + q_2)$. The first and second derivatives are respectively

$$d[q_i g(q_1 + q_2)]/dq_i = g(q_1 + q_2) + [dg(z)/dz]q_i \text{ and} d^2[q_i g(q_1 + q_2)]/dq_i^2 = 2 dg(z)/dz + [d^2g(z)/dz^2]q_i \text{ where } z := q_1 + q_2.$$

It interesting compare the last line with is to $d^2[g(Q)Q]/dQ^2 = 2[dg(Q)/dQ] + [d^2g(Q)/dQ^2]Q_0$. With concave demand we see obviously $d^2[q_ig(q_1+q_2)]/dq_i^2 < 0$ and $d^2[g(Q)Q]/dQ^2 < 0$. When demand is strictly convex, if $d^2[g(Q)Q]/dQ^2 < 0$, then $d^2[q_ig(q_1 + q_2)]/dq_i^2 < 0$ (for all *i*). The converse is also true although not so obvious. [It can be shown by considering sufficiently small q_{i} and recalling the continuity of functions.] Hence, with strictly convex demand, having the second-order conditions satisfied for each quantity-setting duopolistic firm is the same as having the second-order condition satisfied for the revenue maximization problem by choosing Q. This completes (2).

We conclude this note by showing, via the following example, that second-order conditions may fail *globally* in both settings yet monopolist's revenue can be maximized, so can the Nash equilibrium in the duopoly be found.

Recall $P = g(Q) := e^{-Q}$ defined for all $Q \ge 0$. We have shown that revenue can be maximized although $d^2[g(Q)Q]/dQ^2 < 0$ does not hold for all Q > 0. To find the Nash equilibrium, for each *i* of {1, 2}, firm *i* shall, at each given q_j (with $j \ne i$), choose q_i to maximize her profit $q_ig(q_1 + q_2) = q_ie^{-q_i-q_2}$. Note that

International Journal of Business and Economics

 $d[q_i g(q_1 + q_2)]/dq_i$ is zero if $q_i = 1$; positive if $q_i < 1$; negative if $q_i > 1$. $d^2[q_i g(q_1 + q_2)]/dq_i^2 = e^{-q_i - q_2}(q_1 - 2)$ is negative if $q_1 < 2$; zero if $q_1 = 2$; positive if $q_1 > 2$.

Here, at each given q_i the function $q_i g(q_1 + q_2)$ is not concave in q_i yet strict concavity holds in the neighborhood of $q_i = 1$ (i.e., the solution from the first-order condition). And this local maximum turns out to be the global maximum, yielding (1, 1) as the dominant strategy equilibrium as well as the Nash equilibrium.

References

Amir, R. and I. Grilo, (1999), "Stackelberg versus Cournot Equilibrium," *Games* and Economic Behavior, 26(1), 1-21.

Forshner, Z. and O. Shy, (2009), "Constant Best-Response Functions: Interpreting Cournot," *International Journal of Business and Economics*, 8(1), 1-6.

86