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1. Motives and Results 

Assume throughout that the market demand curve is downward-sloping and 
supported by a twice-continuously differentiable demand function f , whose 
inverse function is denoted by g . If the market demand is to be satisfied by a 
monopolist, her (total) revenue is QQgPPfTR )()( == . Most students in 
principles of economics course know that choosing P  to maximize TR  is 
equivalent to choosing Q  to maximize TR . What are not mentioned in textbooks 
for (intermediate) microeconomics or introductory mathematical economics are two 
technical issues: 
(1) Can we say that the second-order condition of “choosing P  to maximize 

PPf )( ” is satisfied if and only if that of “choosing Q  to maximize QQg )( ” 
is satisfied? 

(2) Duopoly naturally follows monopoly in course coverage. If the second-order 
condition of “choosing Q  to maximize QQg )( ” is satisfied, must the 
second-order condition of “for each i  of {1, 2} and at each given jq  ( ij ≠ ), 
choosing iq   to maximize iqqqg )( 21 + ” be satisfied? How about the 
converse? 
Obviously, for any concave demand function ( 0)( 22 ≤dPPfd ), both the 

second-order condition of “choosing P  to maximize PPf )( ” and that of 
“choosing Q  to maximize QQg )( ” are satisfied. When the demand is strictly 
convex ( 0)( 22 >dPPfd ), we show that neither of these two second-order 
conditions implies the another. 

As to (2), it is about maximizing monopolist’s revenue and finding the 
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revenue-maximizing output decision for each firm in a symmetric duopoly. [With a 
constant average and marginal cost 0>c , we can change the term 
revenue-maximizing to profit-maximizing.] We show that for strictly convex 
demand, the second-order condition of “choosing Q  to maximize QQg )( ” is 
satisfied if and only if the second-order condition of “for each i  of {1, 2} and at 
each given jq  ( ij ≠ ), choosing iq   to maximize iqqqg )( 21 + ” is satisfied. An 
interesting example concludes. 

2. Revenue Maximization for a Monopolist 

A standard and simplest way to teach revenue maximization starts with a linear 
demand, say bPaPfQ −== :)(  with 0>a  and 0>b . Here, 

2)( bPaPPPfTR −== , strictly concave in P , likewise for 
12 )()( −−== bQaQQQgTR . The intuitive explanation of why both second-order 

conditions (in revenue maximization) are satisfied is easy: )(Pf  (resp. )(Qg ) is 
linear in P  (resp. Q ) and negatively correlated with P  (resp. Q ). What if 

)(Pf  (resp. )(Qg ) is not linear in P  (resp. Q )? The instinct tells us that for 
strictly concave demand function ( 0)( 22 <dPPfd , hence 0)( 22 <dQQgd ), both 
second-order conditions in (1) are satisfied. The following simple algebra tells it all. 
At 0P , 

00 ])([)(])([ PdPPdfPfdPPPfd +=  (with dPPdf )(  evaluated at 

0PP = ) and 0
2222 ])([])([2])([ PdPPfddPPdfdPPPfd += . 

Likewise, at 0Q , 

00 ])([)(])([ QdQQdgQgdQQQgd +=  (with dQQdg )(  evaluated at 

0QQ = ) and 0
2222 ])([])([2])([ QdQQgddQQdgdQQQgd += . 

By 0)( <dPPdf  and 0)( <dQQdg , we see that 0])([ 22 <dPPPfd  and 
0])([ 22 <dQQQgd  as long as 0)( 22 ≤dPPfd  (or 0)( 22 ≤dQQgd ). So, we 

only have to worry about the case of strictly convex demand.  
Consider the function QeQgP −== :)(  defined for all non-negative Q . Such a 

strictly convex demand can be found in Forshner and Shy (2009) as well as Amir 
and Grilo (1999). At 00 >P , 

0)(1])([ 0 =+−= PlndPPPfd  if 1
0

−= eP .  
01])([ 0

22 <−= PdPPPfd .  

At 00 >Q , 

)1(])([ 0
0 QedQQQgd Q −= −  is positive if 10 <Q ; zero if 10 =Q ; negative 

if 10 >Q . 
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)2(])([ 0

22 0 −= − QedQQQgd Q  is negative if 20 <Q ; zero if 20 =Q ; 
positive if 20 >Q . 

We see that PPf )(  is strictly concave in P  yet QQg )(  is strictly concave 
only for Q  in [0, 2]. In this case and thru either method, revenue is maximized at 

1−= eP  (and 1=Q ). The magnitude of ])([2 dPPdf  must have dominated that 
of 0

22 ])([ PdPPfd  (for all 0P ) while on the contrary, the magnitude of 
])([2 dQQdg  is less than that of 0

22 ])([ QdQQgd  for all 20 >Q . 
The example given above shows that fulfilling the second-order condition of 

“choosing P  to maximize PPf )( ” does not imply that the second-order 
condition of “choosing Q  to maximize QQg )( ”. To see why the converse does 
not hold, consider the iso-elastic demand function 2:)( −== PPfQ  defined for all 

0>P . Note that TR is 5.0)( QQQg =  defined for 0>Q  and that 
0)41(])([ 2322 <−= −QdQQQgd , yet 04])([ 322 >= −PdPPPfd . Having 

addressed issue (1), we can convince students why they should not give it up easily 
when the second-order condition at hand is not satisfied. 

3. A Link with Revenue Maximization in a Quantity-Setting Duopoly 

Suppose instead that two firms are competing in a quantity-setting symmetric 
duopoly. To find the Nash equilibrium, for each i  of {1, 2}, firm i  shall, at each 
given jq  (with ij ≠ ), choose iq  to maximize her profit )( 21 qqgqi + . The first 
and second derivatives are respectively 

iii qdzzdgqqgdqqqgqd ])([)()]([ 2121 ++=+  and 

iii qdzzgddzzdgdqqqgqd ])([)(2)]([ 222
21

2 +=+  where 21: qqz += . 

It is interesting to compare the last line with  
0

2222 ])([])([2])([ QdQQgddQQdgdQQQgd += . With concave demand we see 
obviously 0)]([ 2

21
2 <+ ii dqqqgqd  and 0])([ 22 <dQQQgd . When demand is 

strictly convex, if 0])([ 22 <dQQQgd , then 0)]([ 2
21

2 <+ ii dqqqgqd  (for all i ). 
The converse is also true although not so obvious.  [It can be shown by considering 
sufficiently small jq  and recalling the continuity of functions.] Hence, with strictly 
convex demand, having the second-order conditions satisfied for each 
quantity-setting duopolistic firm is the same as having the second-order condition 
satisfied for the revenue maximization problem by choosing Q . This completes (2). 

We conclude this note by showing, via the following example, that 
second-order conditions may fail globally in both settings yet monopolist’s revenue 
can be maximized, so can the Nash equilibrium in the duopoly be found. 

Recall QeQgP −== :)(  defined for all 0≥Q . We have shown that revenue 
can be maximized although 0])([ 22 <dQQQgd  does not hold for all 0>Q . To 
find the Nash equilibrium, for each i  of {1, 2}, firm i  shall, at each given jq  
(with ij ≠ ), choose iq  to maximize her profit 21)( 21

qq
ii eqqqgq −−=+ . Note that 
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ii dqqqgqd )]([ 21 +  is zero if 1=iq ; positive if 1<iq ; negative if 1>iq . 
)2()]([ 1

2
21

2 21 −=+ −− qedqqqgqd qq
ii  is negative if 21 <q ; zero if 21 =q ; 

positive if 21 >q . 

Here, at each given jq  the function )( 21 qqgqi +  is not concave in iq  yet 
strict concavity holds in the neighborhood of 1=iq  (i.e., the solution from the 
first-order condition). And this local maximum turns out to be the global maximum, 
yielding (1, 1) as the dominant strategy equilibrium as well as the Nash equilibrium. 
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