
International Journal of Business and Economics, 2010, Vol. 9, No. 1, 1-22 

Jump Distribution Characteristics: 
Evidence from European Stock Markets 

Thierry Ané* 
Finance Department, University of Reims, France 

Carole Métais 
DRM Finance, University Paris Dauphine, France 

Abstract 
A comparison of the realized variance and the realized bipower variation provides a 

nonparametric estimation of the sum of all the intraday squared jump sizes. To recover 
individual jumps from this overall contribution to the quadratic variation, one needs to 
estimate both the number of jumps per day and their respective size. We provide a 
framework to do so and analyze the unconditional distributional properties of the two 
components of a jump – intensity and size – for three leading European stock market 
indexes. 
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1. Introduction 

Since the origins of modern finance, continuous-time diffusion processes have 
played a central role in financial modeling, allowing one to elegantly solve problems 
as important as the pricing and hedging of derivative products. However, the recent 
availability of high-frequency data for a wide range of financial assets makes it now 
possible to zoom into an asset price evolution at a scale fine enough to sometimes 
observe price changes that are too sharp over too small time intervals for them to 
remain compatible with a pure diffusion process. Consequently, in recent years, 
there has been a growing interest toward modeling discontinuities in asset returns, 
the so-called jumps, caused by large informational shocks or extreme events. The 
explicit incorporation of jumps in the price process is not new and can be traced 
back to Merton (1976). This literature, however, remains essentially parametric with 
all the subjectivity this implies. In this context, the accuracy of empirical findings 
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thus critically depends on the relevance of the assumed models. 
Whatever the specifications of the jump-diffusion process, however, probability 

theory teaches us that the quadratic variation can be divided into a smooth 
systematic component and a jump component. Building on this simple observation 
and with the help of a powerful asymptotic theory, Barndorff-Nielsen and Shephard 
(2004, 2006a, and 2006b) develop strong econometric devices for detecting the 
presence of jumps in a fully nonparametric setting. Their key idea is to compare two 
measures of price variability: the realized variance introduced in Andersen, 
Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys 
(2001), which includes the contribution of jumps, if any, as it approximates the 
quadratic variation, and the so-called bipower variation, constructed from the 
summation of appropriately scaled cross-products of adjacent high-frequency 
absolute returns, which happens to be robust to the jump contribution and only 
approximates the smooth component of the quadratic variation. It becomes therefore 
possible, at least in theory, to identify the occurrence of jumps by testing the 
significance of the difference between these two measures. This article builds on 
their ingenious theoretical results. 

The ability to separate the jump component from the smooth component of 
price variations remains insufficient, however, to allow for a comprehensive study of 
jump distribution characteristics. Indeed, the comparison of the realized variance 
and bipower variation simply yields the daily part of the quadratic variation 
attributable to jumps, that is, the sum of all intraday squared jump sizes. In order to 
go back from this daily contribution to the individual jumps one needs to estimate 
both the number of jumps per day and their individual sizes, including the sign or 
direction of the jump hidden in the squared jump size. Andersen, Bollerslev, 
Frederiksen, and Nielsen (2007) introduce an algorithm based on Barndorff-Nielsen 
and Shephard’s (2004, 2006a, and 2006b) work to extract the number of jumps per 
day. The main contribution of this article is to offer a new way of splitting the daily 
contribution of jumps to the quadratic variation and relate it to individual intraday 
discontinuities. The knowledge of the number of daily jumps and their sizes and 
directions thus allows one to analyze their distributional characteristics in a 
nonparametric framework. 

Using an intraday database on the three leading European stock indexes, we 
then provide a thorough investigation of the jump process with a special emphasis 
on the distributional characteristics of both the jump intensity and size. In summary, 
we observe that for all indexes the estimated jump intensity is sufficiently high to 
safely reject a purely diffusive process. Jumps tend to remain isolated events and 
days with more than one jump appear to be marginal. Finally, the classically used 
Poisson distribution seems to describe correctly the unconditional jump arrival 
process. Regarding the magnitude of discontinuities, since many asymmetries are 
observed between the positive and negative jumps in all markets, upward and 
downward discontinuities benefit from separate modeling. After trying several 
distributions already discussed in financial applications, we find that the Extended 
Burr XII density may be flexible enough to describe all jump series. We thus 
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conclude that the unconditional jump sizes could possibly be modeled by a mixture 
of Extended Burr XII distributions. However, we also note that our final model for 
the jump process could be improved with the use of time-varying parameters since 
serial dependence is observed in both the jump intensity and jump size series. 

The remainder of this paper is organized as follows. Section 2 presents the 
theoretical framework underlying our jump detection method. Section 3 describes 
the data together with a preliminary analysis. Section 4 introduces the algorithm 
used to extract individual intraday jumps. Section 5 focuses on empirical analysis of 
the jump process, first gathering our findings on the jump intensity then 
documenting evidence about jump size. Section 6 contains concluding remarks. 

2. Jump Detection Method 

Let us first consider a continuous-time jump-diffusion process for the 
logarithmic price )(tp  of a financial asset. It is conveniently expressed in 
stochastic differential equation form as: 

)()()()()()( tdqtktdWtdtttdp ++= σμ . (1) 

The drift )(tμ  is generally supposed to be a continuous process with locally 
bounded variations while the volatility )(tσ  is simply assumed to be a nonnegative 
càdlàg process to allow for occasional jumps. )(tW  denotes a standard Brownian 
motion and )()( tdqtk  represents a pure jump process that can be decomposed into 
a counting process )(tq  with (possible) time-varying intensity )(tλ  and the jump 
size, characterized by )()()( −−= tptptk  with the usual notation 

( ) lim ( )s tp t p s−
↑= . 

If we denote by )0()()( ptptR −=  the logarithmic return over the time 
interval ],0[ t , it is well-known from the theory of quadratic variation that: 

2 2
00

[ , ] ( ) ( )t
t s tR R s ds k sσ ≤ ≤= + ∑∫ , (2) 

where the first term on the right corresponds to the integrated variance of the 
continuous sample path component in (1) while the second term represents the sum 
of the )(tq  squared jump sizes observed between 0 and t . 

As a starting point for the analysis let us now assume that time t  is measured 
in daily units and for any day 1, ,t T= K , we define the j th intraday δ -period 
logarithmic return as: 

, ( ) ( 1 ) ( 1( 1) )t jR p t j p t jδ δ δ= − + − − − , (3) 

where δ1  is the sampling frequency and 1, ,1j δ= K  (to simplify notation, and 
without loss of generality, we assume that δ1  is an integer). The nonparametric 
jump detection technique used in this article relies on the direct comparison of two 
estimates of the asset variability. On the one hand, Andersen, Bollerslev, Diebold, 
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and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2001) sum the 
δ1  squared intraday returns to obtain the so-called daily realized variance: 

∑ =
= δ δδ 1

1
2
, )()(

j jtt RRV . (4) 

On the other hand, Barndorff-Nielsen and Shephard (2004) introduce the bipower 
variation: 

∑ = −
−− −= δ δδδμδ 1

3 2,,
12

1 )()()21()(
j jtjtt RRBV , (5) 

obtained as the sum of multiplied absolute intraday returns where πμ 21 == ZE  
represents the mean of the absolute value of a standard Gaussian variable Z . As the 
sampling frequency of the underlying returns increases (i.e., as 0→δ ), it can be 
shown that: 

∫ ∑− ≤<−
+→

t

t tstt skdssRV
1 1

22 )()()( σδ , (6) 

while 

∫ −
→

t

tt dssBV
1

2 )()( σδ . (7) 

Hence, the fundamental difference between the two measures is that while the 
realized variance estimator encompasses both variation due to the diffusive and the 
jump components, the realized bipower variation remains robust to discontinuities in 
the price movements.1 It is thus possible in theory to obtain a consistent 
nonparametric estimator of the jump contribution through the difference 

)()( δδ tt BVRV − . 
Due to sampling errors, however, this simple estimate of all squared intraday 

jump sizes ∑ ≤<− tst
sk

1
2 )(  may take a negative value or a nonzero small positive 

value on days without jumps. A reliable test statistic is thus required to ensure a 
correct separation of the diffusive and jump contributions from the quadratic 
variation. Andersen, Bollerslev, and Diebold (2007) introduce the tripower 
quarticity: 

34

4,

34

2,

341

5 ,
13

34
1 )()()()41()( δδδδμδδ δ

−−=

−−− ∑−= jtjtj jtt RRRTQ , (8) 

where )21()67(2 13234

34
−ΓΓ== ZEμ  and ( )Γ ⋅  is the gamma function, to 

approximate the variance of the variance process ∫ −

t

t
dss

1

4 )(σ . Using this 
jump-robust measure, Huang and Tauchen (2005) compare the finite sample 
performances of several possible test statistics in a Monte Carlo analysis and 
conclude that a test based on the following asymptotic result: 
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δδμμ
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posseses excellent finite sample properties. 
Following their approach, we denote by αΦ  the critical value of a standard 

normal variable at confidence level α , and identify as “significant” jumps only 
those producing a value of the test-statistic )(δtZ  in (9) larger than αΦ . 
Consequently, if we let ( )I ⋅  denote the indicator function, the estimated jump 
component takes the form: 

( ) [ ], ( ) ( ) ( ) ( )t t t tJ I Z RV BVα αδ δ δ δ= > Φ × − , (10) 

while the continuous sample path contribution is redefined as follows: 

( ) ( ), ( ) ( ) ( ) ( ) ( )t t t t tC I Z RV I Z BVα α αδ δ δ δ δ= ≤ Φ × + > Φ × . (11) 

Obviously, the definition of jumps now depends on the chosen confidence level, 
or, in other words, on what jump sizes are considered significant. Following the 
recommendation of Huang and Tauchen (2005) and the recent work of Andersen, 
Bollerslev, and Diebold (2007), we consider three confidence levels: 

%9.99%,99%,95=α . Since the empirical results are qualitatively the same, we 
only present our findings with %99=α  to save some space. 

3. Data and Preliminary Analysis 

The empirical investigation focuses on the three leading European stock market 
indexes: the Cac 40, the Dax 30, and the Ftse 100. The raw database consists of 
tick-by-tick prices for the seven-year period ranging from September 11, 2000, to 
October 23, 2007. In order to strike a balance between information and bias when 
identifying the jumps, we follow much of the existing literature and opt for a 
5-minute frequency to compute the realized variance and bipower variation. As 
suggested by Andersen et al. (2000), we use the volatility signature plot technique, 
that is, we graphically represent the average realized variance for different 
frequencies in order to check the adequateness of our choice. The plots (not shown) 
support 5-minute sampling. Indeed, a higher sampling frequency would induce 
spurious jumps due to market frictions, while a lower frequency would lead to poor 
sample properties of the test statistic derived in (9). In GMT time, all three markets 
are open from 8:00 am to 4:30 pm, resulting in 102 daily intervals. However, the 
French market presents a pre-closing session starting at 4:25 pm. Consequently, to 
avoid any spurious end-of-day effect on the variance series, we exclude the last 
five-minute trading interval for all markets. This gives a total of 101 intervals per 
trading day. For each day t , 1767,,1 == Tt K , in the database we let j , 

1011,,1 == δKj , index the different 5-minute intraday intervals and calculate the 
realized daily variance according to (4), the realized bipower variation described in 
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(5) as well as the continuous sample path component of (11), and the jump 
component according to (10). 

Table 1. Descriptive Statistics for Daily Returns, Realized Variances, and Their Constituents 

 Daily Returns  Daily Realized Variances 
 Cac 40 Dax 30 Ftse 100  Cac 40 Dax 30 Ftse 100 

Mean –0.0422 –0.0645 –0.0338 Mean 1.2356 1.9823 0.9222 
St. Dev. 1.2011 1.3774 1.0754 St. Dev. 2.0515 3.5293 1.6718 
Skewness –0.0801 –0.3355* –0.2676* Maximum 30.4522 75.7088 36.9883 
Kurtosis 8.0215* 6.5049* 6.8610* Skewness 6.3961* 8.6220* 9.4229* 
Jarque–Bera 1858.39* 937.60* 1118.61*     

 Continuous Path Components  Jump Components 
 Cac 40 Dax 30 Ftse 100  Cac 40 Dax 30 Ftse 100 

Mean 1.1581 1.7128 0.7421 Mean 0.4472 0.8030 0.4107 
St. Dev. 1.9293 3.1933 1.4835 St. Dev. 1.0531 1.2935 0.7757 
Maximum 30.4522 75.7088 36.9883 Maximum 12.3867 12.0554 13.2770 
Skewness 6.7689* 10.4596* 12.1373* Skewness 6.6706* 3.8118* 8.3759* 

Notes: * denotes significance at the 5% level. 

Table 1 gathers the usual descriptive statistics for the daily returns as well as for 
the daily realized measures characterizing the variance and its continuous and jump 
components. Starting with the return series, one observes the usual characteristics to 
be expected from financial data: the presence of significantly fatter tails than those 
of a Gaussian distribution for all markets and a significant negative asymmetry for 
the Dax 30 and the Ftse 100. Not surprisingly, the Jarque-Bera test unambiguously 
rejects normality in all cases at the usual confidence level. 

Although the summary statistics do not reveal important distributional 
differences between the daily return series, they highlight heterogeneity in the 
realized variance behavior across markets. Average variance is twice as high in 
Germany as in the UK and its standard deviation also varies a lot from one market to 
another. The maximum daily variance observed in our sample and the skewness 
statistic reflect how much each realized variance series stretches to the right. The 
continuous sample path )(, δαtC  series is built, according to (11), by removing the 
jump component )(, δαtJ  from the realized variance. By construction, a jump 
component is located whenever the realized variance departs significantly from the 
bipower variation. One could assume that this may happen mainly for large 
observations of the realized variance and consequently expect the values of the 
continuous sample path component )(, δαtC  to extend much less to the right. 
Nevertheless, the skewness coefficients of the diffusive components displayed in 
Table 1 are slightly above the corresponding values for the realized variances. 
Moreover the maximum daily realized variance is the same as the maximum 
continuous path component for all three indexes. This could indicate that jumps are 
not necessarily associated with extreme volatility (even if this observation has to be 
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taken with caution since, as pointed out by a referee, jumps are harder to identify on 
highly volatile days) and that a more straightforward method of extricating jumps 
from diffusive components with a threshold level on the variance would fail to 
identify the correct jump dates. Eventually, the statistics for the jump components 
indicate the existence of very different distributional properties of jump sizes in the 
three European markets. 

Figure 1. Returns, Variances, and Continuous and Jump Components for the Cac 40 

  

  

Additional insights about the realized variance and its constituents can be 
obtained with a visual representation of the reconstructed series. We plot in Figures 
1, 2, and 3 the daily returns, realized variance, jump size, and continuous component 
for the Cac 40, Dax 30, and Ftse 100 respectively. The daily return graphs confirm 
the presence of heteroscedasticity with clusters of high and low variability periods. 
The realized variance estimates perfectly capture this stylized behavior and reveal a 
close correspondence between periods of large positive or negative returns and 
periods of extreme volatility. Moreover, the similarities between the graphs for the 
realized variance and the continuous component are striking for all markets. Finally, 
if we now turn our attention to the jump size graphs, several important 
characteristics are worth mentioning that are present in all three markets (although 
they are easier to observe with the Cac 40 due to the smaller number of jump dates). 
First, the jump magnitude varies a lot over time. Hence the variable )(tk  modeling 
the jump size should have time-varying parameters. Moreover, the existence of time 
aggregation in jump arrival dates is also evident from the graph. This means that the 
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jump intensity )(tλ  for the counting process )(tq  would also need to be 
time-varying. In summary, both the size and intensity of the jump process seem to 
evolve over time and may require conditional modeling. 

Figure 2. Returns, Variances, and Continuous and Jump Components for the Dax 30 

  

  

To conclude this preliminary analysis, Table 2 documents the number of days 
when discontinuities are present, which provides a first approximation of the 
average jump intensity. One can observe that discontinuities are more than twice as 
frequent in the UK as they are in France. With respective average jump intensities of 
0.44 and 0.17, these two markets experience jumps on average every 2.28 or 5.77 
days. The German market presents an intermediate situation with jumps occurring 
on average every 2.98 days. Although the overall number of jumps directly depends 
on the threshold α  used in the calculation of the critical value αΦ , the relatively 
high number of jumps in all markets presents strong evidence against the use of a 
purely continuous stochastic process for the dynamics of asset returns. 

Beyond the intensity of jump occurrences, an informative variable to look at is 
the proportion of the total variance )(δtRV  that can be explained by the jumps 

, ( )tJ α δ . Table 2 also includes descriptive statistics for the contribution of jumps to 
the total variance as measured by this ratio. Interestingly, we observe that this 
measure is quite stable across indexes with an average jump contribution of roughly 

31  and a standard deviation only between 10% and 15%. When they occur, jumps 
are thus an important part of the overall variance for the day and their maximum 
contribution can be as large as 87.71%. 
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Figure 3. Returns, Variances, and Continuous and Jump Components for the Ftse 100 

  

  

Table 2. Jump Intensity and Contribution to the Variability 

 Cac 40 Dax 30 Ftse 100 

Number of Davs with Jumps 306 593 775 
Proxy fro Jump Intensity 0.1732 0.3356 0.4386 
Average Jump Contribution 0.2944 0.3417 0.3782 
Standard Deviation of the Jump Contribution 0.0985 0.1288 0.1461 
Maximum Jump Contribution 0.7177 0.8255 0.8771 
Skewness of the Jump Contribution 1.7125* 1.2292* 0.7863* 

4. From Global Jump Contribution to Individual Jumps 

Despite all the interesting lessons one can draw from the analysis so far, our 
understanding of the jump process remains limited by the fact that, although we 
obtain the overall daily contribution of jumps to the quadratic variation, we are still 
unable to split it into individual jumps. Indeed, the comparison of the realized 
variance )(δtRV  with the bipower variation )(δtBV  through the test statistic 

)(δtZ  simply allows one to obtain the quantity , ( )tJ α δ  in (10), an approximation 
of ∑ ≤<− tst

sk
1

2 )( , the daily part of the quadratic variation attributable to jumps. In 
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order to provide a comprehensive analysis of the jump process, we need to estimate 
both the number of jumps per day )1()( −− tqtq  and their individual sizes )(sk  
(including the sign) for δijts +−= 1 , 1, , ( ) ( 1)i q t q t= − −K , 1, , 1767t T= =K . 

To reach this goal, we now introduce the algorithm we apply to any day t  in 
our sample. It is organized in two steps. The first determines the number of jumps 
per day )1()( −− tqtq  and their exact arrival times δijt +−1  for 

1, , ( ) ( 1)i q t q t= − −K  following the methodology introduced in Andersen, 
Bollerslev, Frederiksen, and Nielsen (2007). Here, in addition, the sign of each jump 
will be determined during this step. The second step focuses on the calculation of the 
absolute value of each jump size. 

We start the first step by calculating )(δtZ  and compare it to the critical value 
αΦ . If the statistic is below the critical value, day t  is considered to be exempt 

from jumps and 0)1()( =−− tqtq . Otherwise, at least one jump has occurred. To 
determine its arrival time we look for an intraday interval 1j  such that: 

)(maxarg)( 2
,1011,,1

2
, 1

δδ δ jtjjt RR === K . (12) 

We then consider that the largest jump in day t  occurred during the interval 
]1,)1(1[ 11 δδ jtjt +−−+−  and assign it the time δ11 jt +−  for notational 

simplicity. In addition to the discontinuity, the 1j th intraday return is made of a 
diffusive component. The two components of the return could have different 
directions. We assume, however, that when a jump occurs during an intraday interval, 
it represents a sufficiently large variation compared to the smooth component to 
dictate the resulting sign of the intraday return 

1, ( )t jR δ . This means that the jump 
direction can be determined as follows: 

{ } { })(sgn)1(sgn
1,1 δδ jtRjtk ≡+− , (13) 

where sgn{}⋅  denotes the sign function. 
Now that the first jump has been identified, we proceed to look for additional 

discontinuities for this day. Since the bipower variation in (5) is robust to the 
presence of jumps, this quantity will remain unchanged in the sequel. The realized 
variance, though, has to be recalculated to exclude the contribution of this first 
identified jump. To this point, a straightforward replacement could be obtained with 
the quantity ∑ ≠=

δ δ1

,1
2
,

1
)(

jjj jtR . Despite the simplicity, this is not advisable since for 
each new jump found the realized variance would be recalculated on one less 
squared return. This would introduce a downward bias in the realized variance 
relative to the bipower variation, resulting in an underestimation of the jumps with 
the statistic )(δtZ . To avoid this bias, we simply replace )(2

, 1
δjtR  by the average 

value of all the other intraday squared returns: 

∑ ≠=

−−≡ δ δδ 1

,1
2
,

12

11
)()11(

jjj jtj RR . (14) 

The new realized variance filtered from the effect of the jump occurring in the 
1j th interval in day t  is thus estimated with: 
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21

,1
2
, 111

)()( jjjj jtjt RRRV += ∑ ≠=−

δ δδ . (15) 

With this value, we then calculate a new statistic 
1

)( jtZ −δ  according to (9) where 
the realized variance )(δtRV  is simply replaced by 

1
)( jtRV −δ . If this new statistic 

falls below αΦ , we consider that day t  is characterized by the presence of a 
single jump ( 1)1()( =−− tqtq ) and move to the second step. Otherwise, we look 
again for )(maxarg 2

,,1,,1 1
δδ jtjjj R≠= K  to identify the second largest jump in day t . 

We then proceed as before to calculate its sign )}(sgn{)}1(sgn{
2,2 δδ jtRjtk ≡+−  

and introduce a new statistic 
1 2,( )t j jZ δ − −  to test for additional discontinuities. The 

procedure is repeated until the statistic 
1 ( ), ,( )

q tt j jZ δ − −K  drops below the critical 
value αΦ , indicate that no additional jumps are present for this particular day. 

With the number of jumps, their signs, and arrival times fully identified, we can 
proceed to the second step and calculate the last information required to recover 
each jump size: its absolute magnitude. To this end, recall that the quantity 

)()()(, δδδα ttt BVRVJ −=  approximates the sum of all squared intraday jump sizes 
∑ ≤<− tst

sk
1

2 )( . Hence, if a single jump has been found in day t , the summation 
reduces to a unique square term and the jump size is simply calculated by: 

)()}(sgn{)1( ,,1 1
δδδ αtjt JRjtk ×≡+− . (16) 

When multiple jumps have been detected in day t , however, one needs to assess 
their respective contributions to the daily jump component )(, δαtJ  of the quadratic 
variation. We assume they can be obtained by looking at by how much each intraday 
squared return )(2

, δ
ijtR , )1()(,,1 −−= tqtqi K , contributes to the realized variance 

calculated only on the intraday intervals exhibiting a jump, namely ∑ =

)(

1
2
, )(tq

i jt i
R δ . 

The different jump sizes are thus computed with: 

)()()()}(sgn{)1( ,

)1()(

1
2
,

2
,, δδδδδ αt

tqtq

i jtjtjti JRRRjtk
iii

××≡+− ∑ −−

=
, (17) 

for all )1()(,,1 −−= tqtqi K . Note that the jump size definition in (17) guarantees 
that )()1( ,

)1()(

1
2 δδ αt

tqtq

i i Jjtk∑ −−

=
=+− . The method adopted thus differs from 

Andersen, Bollerslev, Frederiksen, and Nielsen’s (2007) technique which sets the 
jump size equal to the corresponding intraday return , ( )

it jR δ . Now that all the 
information for the jumps in day t  has been extracted, the algorithm proceeds to 
the next day of the sample. 

5. Empirical Analysis of the Jump Process 

5.1 Number of Jumps and Jump Intensity 

We apply the previously discussed algorithm to the three European stock index 
series and summarize in Table 3 the results relative to the number of daily jumps. 
The table first provides the count of the exact number of jumps between September 
11, 2000, and October 23, 2007. The difference between the numbers of days with 
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jumps reported in this table and those in Table 2 is due to the existence of days with 
more than one jump. With this exact jump count in hand, we can refine the 
approximation for the jump intensity in Table 2 by now dividing the number of 
jumps (and not the number of days with jumps) by the total number of days in our 
sample to form an estimate. Obviously, all jump intensities are increased. We then 
proceed to sort the jump days according to the number of jumps. For all indexes, 
more than 90% of jump days exhibit only a single jump, and there are no more than 
three jumps observed on any given trading day. This confirms that jumps are rare 
and represent isolated events. We note that the proportions of days with 1, 2, or 3 
jumps (Table 4) are remarkably similar across markets. 

Table 3. Jump Arrival Times and Intensity 

 Cac 40 Dax 30 Ftse 100 
Total Number of Jumps 335 642 826 
Exact Jump Intensity 0.1896 0.3633 0.4675 
Maximum Number of Jumps per Day 3 3 3 
Number of Days with 1 Jump 281 547 728 
Number of Days with 2 Jumps 21 43 43 
Number of Days with 3 Jumps 4 3 4 
 Distributional Test for the Jump Occurrences 
 Cac 40 Dax 30 Ftse 100 
P( 0)( =tdq ) 0.8268 0.6644 0.5614 
 (0.8273) (0.6954) (0.6266) 
P( 1)( =tdq ) 0.1590 0.3096 0.4120 
 (0.1568) (0.2526) (0.2929) 
P( 2)( =tdq ) 0.0119 0.0243 0.0243 
 (0.0149) (0.0459) (0.0685) 
P( 3)( ≥tdq ) 0.0023 0.0017 0.0023 
 (0.0009) (0.0056) (0.0107) 
Notes: In addition to the exact jump intensity for each stock index, this table provides the repartition of 
jumps per day. It also compares the empirical probabilities of the number of jumps per day to the 
classically used Poisson distribution. 

At this point, recall that the daily jump contribution , ( )tJ α δ  depends on the 
selected confidence level α  and, consequently, so does the number of days 
exhibiting jumps. We want to test, however, the robustness of the algorithm 
introduced for the detection of the number of intraday jumps. To do so, we use our 
algorithm to calculate the number of days with 1, 2, 3, … jumps for 

%9.99%,99%,95=α . We summarize the proportions obtained in Table 4. 
Mechanically, when the value of α  is lowered, the overall number of jumps 
obtained increases. Consequently, one could expect a rise in the maximum number 
of jumps per day. The opposite effect is expected for a higher confidence level α . 
However, the empirical evidence in Table 4 reveals that the algorithm robustly 
estimates the number of days with multiple jumps. Indeed, when %95=α  the 
maximum number of jumps only rises to 4 and the proportions show that this little 
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increase only happens exceptionally, and when %9.99=α  the maximum number 
of jumps remains equal to 3. To ensure that the repartition of jump days according to 
the observed discontinuities is not statistically affected by a change in α , we 
nonparametrically test whether the proportion of days with 1, 2, 3, … jumps is 
different for the three possible values of α . For each index, we observe that there is 
no statistical difference in the percentage of days with multiple discontinuities 
(whether it is 2, 3, or 4). As expected, this result does not hold for the single-jump 
days since, in this case, the threshold α  directly controls for the amount of 
noise-jumps. To conclude, the analysis of the results in Table 4 largely highlight the 
robustness of the number of jumps detection technique.2 

Table 4. Robustness Analysis of the Number of Daily Jumps Detection Algorithm 

 Days with 1 Jump  Days with 2 Jumps 
 %95=α  %99=α  %9.99=α  %95=α %99=α %9.99=α  

Cac 40 0.8569≠≠ 0.9183≠≠ 0.9530≠≠ Cac 40 0.1254 0.0686 0.0403 
Dax 30 0.8657≠≠ 0.9224≠≠ 0.9587≠≠ Dax 30 0.1131 0.0725 0.0388 

Ftse 100 0.8722≠≠ 0.9394≠≠ 0.9747≠≠ Ftse 100 0.1124 0.0555 0.0235 
 Days with 3 Jumps  Days with 4 Jumps 
 %95=α  %99=α  %9.99=α  %95=α %99=α %9.99=α  

Cac 40 0.0141 0.0131 0.0067 Cac 40 0.0035 0.0000 0.0000 
Dax 30 0.0200 0.0051 0.0026 Dax 30 0.0012 0.0000 0.0000 

Ftse 100 0.0124 0.0052 0.0018 Ftse 100 0.0031 0.0000 0.0000 
Notes: ≠≠ denotes significance at the 5% level. 

Almost invariably, the parametric literature on jump-diffusion processes 
assumes a Poisson distribution for the counting process )(tq  in (1). Using the 
refined estimate for the jump intensity in Table 3, we calculate the theoretical 
probability of obtaining 0, 1, 2, or more jumps with a Poisson distribution and report 
these in parentheses below the corresponding empirical probability computed as the 
ratio of the number of days with 0, 1, 2, or more jumps over the total number of days. 
The pairs of probabilities are sufficiently close for all three European indexes to 
conclude that a Poisson distribution models reasonably well the probability of jump 
occurrences. Indeed, a researcher in search of an improvement in fit should not look 
for a better parametric distribution but simply focus on refining the definition of the 
jump intensity. As suggested by time aggregation in jump arrival dates (Figures 1, 2, 
and 3), the Poisson distribution would benefit from the introduction of a 
time-varying parameter. Explicitly modeling the time structure of all important 
quantities, however, is beyond the scope of this study, whose goal is purely to 
highlight how the essential components of a jump can be extracted 
nonparametrically and to present potential unconditional distributions. 
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Figure 4. Average Variability and Jump Repartition by Interval 

  

 

Notes: We use average squared returns per interval to highlight the intraday volatility pattern in the three 
cash index series (dotted lines) and superimpose these over the proportion of jump arrivals (histograms) 
by intraday interval to show its direct link with intraday volatility patterns. 
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Although the study of full conditional models is left for future research, there is 
still another type of seasonality worth discussing here: the intraday pattern in jump 
occurrences. As a byproduct of our jump detection procedure, we identify the 
intraday intervals )1()(1, −− tqtqjj K , where discontinuities are observed for a specific 
day t . Using this information we calculate the proportion of jumps occurring in 
each 5-minute interval. Figure 4 shows the histogram of jump arrivals for each stock 
market index. For the sake of comparison, we also compute the intraday seasonality 
of the variance with ∑ =

− T

t jtRT
1

2
,

1 , δ1,,1K=j , following Andersen and Bollerslev 
(1998). The obtained pattern is superimposed as a dotted line over the histogram. 

Strikingly, for all indexes, the variance and jump arrival time present the same 
inverted J-shaped pattern. Variance is high and jumps are much more frequent 
during the first five minutes of trading. Indeed, 20% of the Cac 40 jumps are 
concentrated there while this figure rises up to 58% or 76% for the Dax 30 and the 
Ftse 100 respectively. Volatility and jump arrivals then decline before experiencing 
two more peaks at 1:30 pm and 3:00 pm GMT. The initial peak can classically be 
explained by the pressure at a market opening after a long period of interrupted 
trading and the accompanying accumulated information. The remaining peaks, 
occurring at 8:30 am and 10:00 am in Eastern Standard Time, coincide with 
macroeconomic news announcements in the US. They thus suggest that a large 
proportion of the jumps observed in the European cash indexes are related to the 
release of regularly scheduled American news.3 

5.2 Probabilistic Investigation of Jump Sizes 

Now that the jump intensity has been studied, the next logical step is to turn our 
attention to the second component of a discontinuity, namely the jump size. The first 
part of Table 5 gives the usual descriptive statistics for the estimated jump sizes of 
the three European indexes. In all cases, the average jump size is not significantly 
different from zero, and the standard deviation is comparable in all markets. In the 
parametric literature on jump-diffusion processes, a normal distribution is generally 
assumed to characterize the magnitude of discontinuities, as in Eraker et al. (2003) 
and Duffie et al. (2000). Unfortunately, the significant asymmetry and excess 
kurtosis obtained for the three jump size series are obvious evidence against this 
distributional choice. The Jarque-Bera test unambiguously rejects the normality of 
jump sizes for the three markets. Even though we do not focus on conditional 
models in this article, we include in the first part of Table 5 a Ljung-Box test to 
investigate whether jump sizes are serially correlated. The values clearly indicate 
that small and large jump sizes are aggregated through time in the European markets. 
In agreement with our first intuition from Figures 1, 2, and 3, we can conclude that a 
conditional model would be required for the jump size. Hence both jump intensity 
and jump size seem to be time-varying. 
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Table 5. Positive and Negative Jump Sizes 

 Descriptive Statistics for the Jump Size 

 Cac 40 Dax 30 Ftse 100 
Mean 0.0048 0.0240 0.0314 
St. Dev. 0.6401 0.8615 0.6203 
Skewness –0.2779* –0.4441* –0.2317* 
Kurtosis 7.2158* 3.9342* 4.9194* 
Ljung–Box (10) for Jump Sizes 32.71* 49.02* 55.18* 
Jarque–Bera Normality Test 252.39* 44.44* 134.18* 

 Descriptive Statistics for the Positive Jump Size 

 Cac 40 Dax 30 Ftse 100 
Proportion 0.5045 0.5685≠≠ 0.5605≠≠ 
Mean 0.4880 0.6282≠≠ 0.4880≠≠ 
St. Dev. 0.4016 0.4541≠≠ 0.3296≠≠ 
Minimum 0.1353 0.1157 0.1047 
Maximum 2.2157 2.4123 2.6074 
Skewness 2.5322≠≠ 1.5853 2.6696 
Kurtosis 9.8984≠≠ 5.3174≠≠ 13.1146≠≠ 
Implied Jarque–Bera Test:    

Exponential Distribution 86.63* 32.58* 174.85* 
Lognormal Distribution 23.02* 11.52* 21.19* 
Gamma Distribution 87.17* 164.01* 176.45* 
Inverse Gaussian Distribution 25.13* 8.21* 26.11* 
Extended Burr XII Distribution 1.68 2.48 0.22 

 Descriptive Statistics for the Negative Jump Size 

 Cac 40 Dax 30 Ftse 100 
Proportion 0.4955 0.4315≠≠ 0.4395≠≠ 
Mean –0.4871 –0.7721≠≠ –0.5511≠≠ 
St. Dev. 0.4273 0.5771≠≠ 0.3624≠≠ 
Minimum –3.5195 –3.4721 –3.6438 
Maximum –0.1269 –0.1394 –0.1233 
Skewness –3.5796≠≠ –1.7558 –2.7706 
Kurtosis 21.4475≠≠ 6.7010≠≠ 18.6642≠≠ 
Implied Jarque–Bera Test:    

Exponential Distribution 147.57* 20.15* 67.98* 
Lognormal Distribution 22.18* 6.63* 3.95 
Gamma Distribution 148.37* 20.38* 68.75* 
Inverse Gaussian Distribution 29.84* 4.34 3.28 
Extended Burr XII Distribution 0.18 0.73 0.11 

Notes: * denotes significance at the 5% level and ≠≠ denotes that corresponding positive and negative 
quantities are statistically different in absolute value at the 5% level. 



Thierry Ané and Carole Métais 17

Figure 5. Histogram and Lognormal Kernel Densities for the Jump Sizes 
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repartition of jump sizes, we need to look for an alternative parametric model. Even 
if it is not entirely accurate, a basic histogram could be useful to form an opinion 
about the shape of the jump size distribution and could help find a suitable model. 
Figure 5 presents this histogram for each stock index. One can observe that the mass 
around zero is very small, meaning that few small jumps are identified by our 
method. Indeed, as pointed out by a referee, whatever the jump detection technique 
one would opt for, the identification of small discontinuities is, theoretically and in 
practice, problematic. However, Zhang (2007) argues that one may assimilate small 
jumps to the diffusive part of the variance process and treat large jumps as a 
compound Poisson process without that being harmful to the analysis. 

In addition, we see that there is an important degree of asymmetry between the 
positive and negative sides. The last two subparts of Table 5 display the descriptive 
statistics of the jump sizes sorted by sign. First, we note that the proportion of 
positive and negative jumps is not significantly different for the Cac 40 whereas the 
other two indexes experience positive discontinuities more often (roughly 56% 
versus 44%). Similarly, no significant asymmetry in the average jump size or jump 
size standard error can be found on the French market. In Germany and the UK, 
however, negative jumps are more volatile and have a larger absolute magnitude on 
average. The maximum and minimum values as well as the skewness parameters 
confirm the existence of a strong asymmetry between the distribution of positive and 
negative discontinuities of all stock markets. Given the scarcity of theoretical 
distributions exhibiting these characteristics, we consider it best to separately model 
the negative and positive jump sizes (negative jump sizes will be modeled in 
absolute values below). 

To this point, to refine our perception of each jump size series (positive and 
negative for each index), it could be useful to obtain a nonparametric density 
estimate that is more robust that a simple histogram. A classical approach is to resort 
to a kernel density estimate. Traditional kernel methods are inappropriate here since 
they involve weights over the entire real line while the absolute jump sizes are 
bounded to the left by 0. Several solutions have been discussed in the abundant 
statistical literature on kernel density estimation. In order to maintain the simple 
spirit of the standard kernel estimators, we follow Chen’s (2000) recent approach 
and use asymmetric kernels of the form: 

∑ =

−= N

i ii hXbhXaxkNhxf
1

1 )),(),,(;();(ˆ , (18) 

where N
iiX 1}{ =  represents a jump size series and ( , )a h⋅  and ( , )b h⋅  are two 

functions characterizing the shape parameters of the selected positive kernel 
)),(),,(;( hbhaxK ⋅⋅  with bandwidth parameter h . In this paper, the 

nonparametric density estimator is constructed with lognormal kernels of the form: 
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with 0>u  and 0>β . The lognormal kernel density estimator is then given by: 

∑ =

− += N

i iLN hXxKNhxf
1

1 ))1ln(4),ln(;();(ˆ . (20) 

We note that such lognormal kernel estimators achieve the optimal rate of 
convergence in the mean integrated square error within the class of nonnegative 
kernel density estimators. Moreover, the shape of the lognormal kernels varies 
naturally, which leads to the amount of smoothing being changed according to the 
position where the density estimation is made without explicitly changing the 
bandwidth. This implies that the lognormal kernel estimators in (20) are adaptive 
density estimators. Finally, the optimal bandwidth parameter is obtained by least 
square cross-validation. The obtained nonparametric densities are depicted in Figure 
5 together with the previously discussed histograms. They will be used as a 
benchmark to assess the goodness-of-fit of the competing parametric distributions 
for the jump size. 

In the financial literature, when jumps are introduced in the volatility process 
and require a nonnegative distribution, the classical choice is an exponential model. 
Once again, this is how both Eraker et al. (2003) and Duffie et al. (2000) choose to 
describe the uncertainty in the jump magnitude. Among the other usual distributions 
with a positive support one could think of to represent the size of a jump, the 
lognormal, gamma, and inverse Gaussian densities have a long list of applications in 
finance. For each series of jump absolute magnitudes, we calibrate these four 
distributions and test their goodness-of-fit with an implied Jarque-Bera statistic (i.e., 
we transform the initial jump size series N

iiX 1}{ =  into 1
1ˆ{ [ ( , )]}N

i iF X ψ−
=Φ  where 

ˆ( , )F ψ⋅  is the parametric cdf with parameter vector ψ̂  obtained by maximum 
likelihood and perform a usual Jarque-Bera test to check the normality). The results 
of this investigation, reported in the second and third part of Table 5 under the 
heading “Implied Jarque-Bera,” indicate that none of these classical distributions is 
flexible enough to accurately describe the jump size behavior. 

With four parameters to increase the flexibility, the Extended Burr XII 
distribution is certainly less popular in finance but has proved particularly useful in 
other sciences to describe positive random variables in modeling problems 
surprisingly not far from financial concerns. To give a single example, Shao, Wong, 
Xia, and Ip (2004) promote its goodness-of-fit for the modeling of extremes in flood 
frequency analysis. The Extended Burr XII distribution is characterized by the cdf: 
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x
xxF XIIBurr  (21) 

The support for x  is ∞<≤ x0  when 0≤τ  and θλτ 10 −<≤ x  when 
0>τ . The location parameter μ  and the first shape parameter τ  belong to ℜ  

while the scale parameter λ  and the second shape parameter θ  are nonnegative. 
We also calibrate this parametric model to each jump size series and rely on the 

previously discussed implied Jarque-Bera test4 to assess its relevance for the 
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magnitude of discontinuities. The statistics reported in Table 5 show the adequacy of 
this distribution for positive and negative jump sizes of all stock indexes. We thus 
recommend describing the variable ( )k Y⋅ ≡  characterizing the jump through a 
mixture of Extended Burr XII distributions of the type: 

)0(),,,;()0(),,,;()( 2222211111 ≥+<−= yIyfpyIyfpyf XIIBurrXIIBurrY τθλμτθλμ , (22) 

where 1i =  and 2i =  represent the negative and positive jump size of a particular 
index, respectively, and 21 1)0)(( pkPp −=<⋅=  represents the probability of a 
downward jump. 

We have already noted that jump sizes seem to be time-varying; consequently 
an additional improvement could probably be obtained by allowing the distribution’s 
parameters to evolve through time. However, this issue is beyond the scope of the 
current article and we leave it for future research. 

6. Conclusion 

Merton (1976) noted that “since empirical studies of price series tend to show 
far too many outliers for a simple, constant-variance lognormal distribution, there is 
a ‘prima facie’ case for the existence of jumps.” The recent generalization of ultra 
high-frequency data allows a visual confirmation of this intuition. Indeed, simple 
graphs of price evolutions reveal the presence of changes that are too sharp for them 
to come from a purely diffusive process. However, until recently, the estimation 
difficulty of jump-diffusion models has limited their use in empirical studies. 

Building on the ideas at the origin of the so-called realized variance of 
Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, 
and Labys (2001), Barndorff-Nielsen and Shephard (2004, 2006a, and 2006b) 
introduced a new variance estimate, called realized bipower variation, that remains 
robust to the presence of jumps. Nonparametric identification of the jump 
contribution becomes therefore possible with a simple test of significance for the 
difference between the two measures. 

Comparison of the realized variance and bipower variation, however, simply 
provides the daily part of the quadratic variation attributable to jumps as represented 
by the sum of all the intraday squared jump sizes. The main contribution of this 
article is to introduce an algorithm based on Barndorff-Nielsen and Shephard’s 
(2004, 2006a, and 2006b) work to recover from this daily contribution the individual 
jumps. We thus estimate both the number of jumps per day and their individual sizes 
(including the sign of the jump hidden in the squared jump size) before providing a 
comprehensive study of their distributional characteristics. 

Using a database for the three leading European stock indexes, we reject the 
assumption of purely diffusive return processes given the obtained average jump 
intensities. Nonetheless, jumps remain isolated events and days with more than one 
jump are marginal. From a probabilistic viewpoint, the commonly assumed Poisson 
distribution seems to describe the rate of occurrence of discontinuities very well. 
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Turning our attention to jump sizes, we observe that their distribution exhibits 
asymmetries and consider it best to separately model positive and negative 
discontinuities. Among all the theoretical distributions we tried, the Extended Burr 
XII density seems to be flexible enough to describe all jump series. We conclude 
that jumps could be modeled by a mixture of Extended Burr XII distributions. 

Eventually, although both components of the jump process appear to be 
accurately described by their theoretical models, the existence of serial dependence 
in both the jump intensity and jump size series indicates that improvements could be 
obtained with the use of time-varying parameters. This extension, however, is left 
for future research. 

Note 

1. Alternative jump-robust variance estimators have recently been developed; see for instance 
Andersen et al. (2009) and Corsi et al. (2008). 

2. As advised by a referee, we check whether another jump detection technique yields similar results. 
We choose to focus on Lee and Mykland’s (2008) method since it also allows detecting 
discontinuities at the intraday level. The results obtained using this alternative approach are 
qualitatively the same and our main conclusions remain unchanged. 

3. To account for the impact of intraday seasonality in the variance, it is possible to standardize each 
5-minute return )(, δjtR  by the sample standard deviation over the interval j . In doing so, the 
number of detected jumps is lowered but our conclusions remain the same. Moreover, even if we 
account for this systematic pattern, the intraday intervals with the highest jump proportion are still 
the opening and the 1:30–1:35 pm and 3:00–3:05 pm intervals, which support the robustness of our 
analysis. 

4. We only report this implied Jarque-Bera test for brevity. We also tested the adequacy of all 
parametric models with alternative tests, such as quantile-quantile plots and Anderson-Darling 
statistics. 
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